« 7 VOLUME II

SoftCard™

A Peripheral for the Apple I1°
With CP/M® and Microsoft BASIC on diskette.

Produced by Microsoft

Microsoft Consumer Products
400 108th Ave. NE, Suite 200
Bellevue, WA 98004

N

Copyright and Trademark Notices

The Microsoft SoftCard and all software and documentation in the
SoftCard package exclusive of the CP/M operating system are copyrighted
under United States Copyright laws by Microsoft. The CP/M operating
system and CP/M documentation are copyrighted under United States
Copyright laws by Digital Research.

It is against the law to copy any of the software in the SoftCard package
on cassette tape, disk or any other medium for any purpose other than
personal convenience.

Itis against the law to give away or resell copies of any part of the Microsoft

SoftCard package. Any unauthorized distribution of this product or
any part thereof deprives the authors of their deserved royalties. Microsoft
will take full legal recourse against violators.

If you have any questions on these copyrights, please contact:

Microsoft Consumer Products
400 108th Ave. NE, Suite 200
Bellevue, WA 98004

Copyright® Microsoft, 1980
All Rights Reserved
Printed in U.S.A.

*SoftCard is a trademark of Microsoft.
®Apple is a registered trademark of Apple Computer Inc.

®CP/M is a registered trademark of Digital Research, Inc.

®Z-80 is a registered trademark of Zilog, Inc.

TABLE OF CONTENTS
INTRODUCTION

SoftCard System Explained

Designers and Manufacturer

System Requirements

SoftCard Terminology

Digital Research License Information

Microsoft Consumer Products
Registration Information

Warranty

Service Information

PART I: Installation and Operation

Chapter 1: How to Install the SoftCard
Apple Peripheral Cards: What Goes Where
Interface Cards Compatible with CP/M
Placement of Apple Disk Drives
Printer Interface Installation
General Purpose 170 Installation
Using an External Terminal Interface
Installation of the SoftCard

Chapter 2: Getting Started with Apple CP/M
Bringing up Apple CP/M
How to copy your SoftCard Disk
Creating CP/M System Disks
Using Apple CP/M with the
Apple Language Card
I/0 Configuration

Chapter 3: An Introduction to Using Apple CP/M

Typing at the Keyboard

Output Control

CP/M Warm Boot: Ctrl-C
Changing CP/M Disks

CP/M Command Structure
CP/M File Naming Conventions

il

Some CP/M commands: 1-22
DIR, ERA, REN, TYPE

CP/M Error Messages 1-23
Description of Programs Included on the 1-26
SoftCard Disk

Chapter 4: Getting Started with
Microsoft BASIC 1-31

PART II: Software and Hardware Details

Chapter 1: Apple II CP/M Software Details

Introduction 2
I/Hardware Conventions 2-
6502/7Z-80 Address Translation 2
Apple I1 CP/M Memory Usage 2
Assembly Language Programming with the
SoftCard 2-7
ASCII Character Codes 2-7

Chapter 2: Apple II CP/M
170 Configuration Block
Introduction 2-12
Console Cursor Addressing/Screen Control 2-12
The Hardware/Software Screen Function Table
Terminal Independent Screen
Functions/Cursor Addressing
Redefinition of Keyboard Characters 2-17
Support of Non-Standard Peripheral Devices 2-17
Calling of 6502 Subroutines

Indication of Presence and Location of 2-24
Peripheral Cards
Chapter 3: Hardware Description
Introduction 2-28
Timing Scheme 2-28
SoftCard Control 2-29
Address Bus Interface 2-29

Data Base Interface 2-31

1i

6502 Refresh

DMA Daisy Chain
Interrupts

SoftCard Parts List
SoftCard Schematic

PART III: CP/M Reference Manual

2-31
2-32
2-32
2-32
2-34

Chapter 1: Introduction to CP/M Features and Facilities

Introduction
An Overview of CP/M 2.0 Facilities
Functional Description of CP/M
General Command Structure
File References
Switching Disks
Form of Built-In Commands
ERAse Command
DIRectory Command
REName Command
SAVE Command
TYPE Command
USER Command
Line Editing and Output Control
Transient Commands
STAT
ASM
LOAD
DDT
PIP
ED
SUBMIT
DUMP
BDOS Error Messages

Chapter 2: CP/M 2.0 Interface Guide
Introduction
Operating System Call Conventions
Sample File-to-File Copy Program
Sample File Dump Utility

iv

3-3

Sample Random Access Program 3-69
System Function Summary 3-7

[«

Chapter 3: CP/M Editor
Introduction to ED
ED Operation
Text Transfer Functions
Memory Buffer Organization
Memory Buffer Operation
Command Strings
Text Search and Alteration
Source Libraries
ED Error Conditions
Summary of Control Characters
Summary of ED Commands
ED Text Editing Commands

PP PR
@ ddd iy
© B

ool ddo

CQCQCQCQC.QCQCQCQC&J
N~ OO WWw

Chapter 4: CP/M Assembler
Introduction
Program Format 3-99
Forming the Operand 3-100
Labels
Numeric Constants
Reserved Words
String Constants
Arithmetic and Logical Operators
Precedence of Operators
Assembler Directives 3-105
The ORG Directive
The END Directive
The EQU Directive
The SET Directive
The IF and ENDIF Directives
The DB Directive
The DW Directive
Operation Codes 3-110
Jumps, Calls and Returns
Immediate Operand Instructions
Data Movement Instructions

J
O
<

Arithmetic Logic Unit Operations
Control Instructions

Error Messages 3-114
A Sample Session 3-115
Chapter 5: CP/M Dynamic Debugging Tool

Introduction 3-123
DDT Commands 3-125
The A (Assembler) Command 3-126
The D (Display) Command 3-126
The F (Fill) Command 3-127
The G (Go) Command 3-127
The I (Input) Command 3-128
The L (List) Command 3-129
The M (Move) Command 3-129
The R (Read) Command 3-129
The S (Set) Command 3-130
The T (Trace) Command 3-131
The U (Untrace) Command 3-132
The X (Examine) Command 3-132

Implementation Notes

PART IV: Microsoft BASIC
Reference Manual

Introduction

Chapter 1: Microsoft BASIC-80 and Applesoft: 4-3
A Comparison
Features of Microsoft BASIC not found
in Applesoft 4
Applesoft Enhancements 4-
Features Used Differently in Microsoft
BASIC than in Applesoft 4
Changes in BASIC-80 Features 4
Applesoft Features Not Supported 4-
4

Chapter 2: General Information About BASIC-80

Chapter 3: BASIC-80 Commands and Statements 4-24

V1

Chapter 4: BASIC-80 Functions

—~ Chapter 5: High Resolution Graphics, GBASIC 4-98

Appendices
High Resolution Graphics: GBASIC 4-99
New Features in BASIC-80, Release 5.0 4-103
BASIC-80 Disk I/0 4-106
Assembly Language Subroutines 4-116
Converting Programs to BASIC-80 from
BASICs Other Than Applesoft 4-121
Summary of Error Codes and Error Messages 4-123
Mathematical Functions 4-128
ASCII Character Codes 4-130
PART V: Software Utilities Manual
Introduction 5-2

Format Notation

To Prepare Diskettes for Reading and
Writing: FORMAT 5-3

To Make Copies of Diskettes: COPY 5-7
To Create CP/M System Disks

To Convert 13-Sector CP/M Files from

16-Sector CP/M: RW13 5-10
To Configure CP/M for a 56K System: CPM56 5-12
To Transfer Files from Apple DOS to

CP/M: APDOS 5-14
To Configure the Apple CP/M

Operating Environment: CONFIGIO 5-16

1. Configure CP/M for External Terminal
2. Redefine Keyboard Characters
3. Load User I/0 Configuration
To Transfer CP/M Files from
Another Computer: DOWNLOAD and UPLOAP 5-28

vii

Microsoft
BASIC
Reference
Manual

PART IV: Microsoft BASIC
Reference Manual

INTRODUCTION 4-3
CHAPTER 1 BASIC-80 and Applesoft: A

Comparison 4-4
CHAPTER 2 General Information

About BASIC-80 4-9
CHAPTER 3 BASIC-80 Commands and

Statements 4-24
CHAPTER 4 BASIC-80 Functions 4-81
CHAPTER 5 High Resolution Graphics:

GBASIC 4-98
APPENDIX A New Features in

BASIC-80, Release 5.0 4-103
APPENDIX B BASIC-80 Disk I/0 4-105
APPENDIX C Assembly Language

Subroutines 4-115
APPENDIX D Converting Programs to

BASIC-80 4-121
APPENDIX E Summary of Error Codes

and Error Messages 4-123
APPENDIX F Mathematical Functions 4-128
APPENDIX G ASCII Character Codes 4-130

4-1

INTRODUCTION

Microsoft BASIC, written for Z-80 and 8080 microprocessors, is the
most extensive implementation of BASIC available for microcomputers
today. Now in its fifth major release, Microsoft BASIC (or BASIC-80)
meets the ANSI qualifications for BASIC as set forth in document
BSRX3.60-1978. It is upwardly compatible with Applesoft BASIC.

With the Microsoft SoftCard, the most recent version of BASIC-80,
Version 5.0, is available to Apple owners for the first time. It brings new
power to the Apple, adding major features such as PRINT USING,
16-digit precision, CALL, CHAIN and COMMON, WHILE/WEND and
improved disk 1I/0.

The SoftCard package includes two versions of Microsoft BASIC.
MBASIC, which is found on both disks, includes all standard Applesoft
extensions from low-resolution graphics to sound and cursor control.
These features plus high-resolution graphics are included in GBASIC,
which is found on the 16-sector disk only.

The reference guide is divided into five chapters plus a number of ap-
pendices. Chapter 1 is a short section covering differences between Mi-
crosoft BASIC and Applesoft, especially important for persons used to
programming in Applesoft. Chapter 2 includes instructions for initializa-
tion of either version of Microsoft BASIC, (referred to throughout this
manual as BASIC-80), and explains details of information representa-
tion when using Microsoft BASIC. Chapter 3 contains the syntax and
semantics of every command and statement in BASIC-80 for the Apple,
ordered alphabetically. Chapter 5 pertains to GBASIC only, describing
all features found exclusively in GBASIC. The appendices contain lists
of error messages, ASCII codes and math functions plus helpful informa-
tion on the use of assembly language subroutines and disk I/0.

This manual is not intended as a tutorial on the BASIC language. It is
a reference manual for the specific features of Microsoft BASIC. If you
need instructional material regarding the BASIC language, we suggest
you read one of the following:
BASIC by Robert L. Albrecht, LeRoy Finkel, Jerry Brown (John
Wiley & Sons, 1973)
BASIC and the Personal Computer by Thomas A. Dwyer and
Margot Critchfield (Addison-Wesley Publishing Co., 1978)
BASIC From the Ground Up by David E. Simon (Hayden, 1978)

4-3

CHAPTER 1

Microsoft BASIC-80 and Applesoft:
A Comparison

Microsoft BASIC-80, Version 5.0, includes many features not found in
Applesoft and also uses some features differently than Applesoft. Realiz-
ing that most SoftCard buyers have previously written BASIC programs
in Applesoft, we include here a listing of the differences between the two
versions of BASIC.

By making note of these differences and using the new features pro-
vided by BASIC-80, you can take advantage of increased BASIC pro-

gramming power.

Features of Microsoft BASIC not found in Applesoft

The following features are found in Microsoft BASIC only. A brief de-
scription of these features is given here; for more information on the
syntax, purpose and peculiarities of each, see Chapters 2 and 3 of this
manual.

CHAIN and Used to call in another BASIC program from
disk and pass variables to it. This feature allows
COMMON -
the disk to be used as program memory.

CALL Used to call 6502 or Z-80 assembly language
subroutine or FORTRAN subroutine.

PRINT USING Greatly enhances programming convenience
by making it easy to format output. It includes
asterisk fill, floating dollar sign, scientific nota-
tion, trailing sign, and comma insertion.

Builtsin Disk I/0 Since standard Applesoft BASIC and integer
BASIC were not designed for a disk environ-
Statements ment, Disk I/0 commands have to be included
in PRINT statements. With Microsoft BASIC
5.0’s built-in disk I70 statements, this process is
eliminated (no more PRINT "ctrl D”).

WHILE/WEND Gives BASIC a more structured flavor. By put-
ting a WHILE statement in front of a loop and

44

TN

EDIT Commands

AUTO and
RENUM

IF ... THEN ...
ELSE

ANSI Compati-
bility

Compilability

Powerful Data
Types

Added String
Functions

the WEND statement at the end, BASIC 5.0 will
continuously execute the loop as long as a given
condition is true.

Let you edit individual program lines easily
and efficiently without re-entering the whole
line.

RENUM makes it easier to edit and debug pro-
grams by letting you automatically renumber
lines in user-specified increments. AUTO is a
convenience feature that generates line num-
bers automatically after every carriage return.

Extends the IF statement in Applesoft to pro-
vide for handling the negative case of IF.

Microsoft 5.0 BASIC meets the ANSI qualifica-
tions for BASIC, as set forth in document
BSRX3.60-1978. That means any program you
write on your Apple in Microsoft BASIC can be
run on any other machine that has an ANSI
standard BASIC.

Microsoft has developed a BASIC compiler
that compiles MBASIC and GBASIC programs
into directly executable Z-80 machine code. The
compiler is available separately to SoftCard
owners.

BASIC 5.0 has three variable types — fast two-
byte true integer variables, single precision
variables and double precision variables — to
give it 16-digit precision, as opposed to 9-digit
precision on the Apple. Also, hexadecimal and
octal constants may be used.

INSTR, HEXS$, OCT$, STRINGS, and direct as-
signment of substrings with MID$ are imple-
mented.

Added Operators New boolean operators AND, OR, XOR, IMP,

User-Defined
Functions

Protected Files

and EQV are provided. True Integer arithmetic

is supported with an Integer divide and MOD)

operators.

BASIC-80 flser-deﬁned functions allow multi-
ple arguments.

BASIC programs may be saved in a protected
binary format. See SAVE, Chapter 3.

We have also included four new features to Microsoft BASIC, especially
to take advantage of the Apple’s unique characteristics. They are:

BUTTON(0)
BEEP

HSCRN(X,Y)

VPOS(0)

A function used to determine whether a paddle
button has been pressed.

A statement that generates a tone of specified
pitch and duration.

A function used to determine if a point has
been plotted on the high-resolution screen at a
specified point.

A function that returns the vertical cursor posi-
tion.

Applesoft Enhancements

Both versions of BASIC support low-resolution graphics, sound, cursor
control and other Applesoft BASIC features. The version of Microsoft
BASIC included on the 16-sector disk also supports all of the Applesoft
high-resolution graphics features except DRAW, XDRAW, SCALE and

ROT.

Applesoft-compatible statements and functions found in MBASIC and
GBASIC are shown below. Those features available only in GBASIC are
indicated with an asterisk.

GR .
COLOR
PLOT
VLIN
HLIN
SCRN
POP
HGR*
HCOLOR*
HPLOT*

TEXT
HTAB
VTAB
INVERSE
NORMAL
PDL(0)

Features Used Differently in Microsoft BASIC Than in
Applesoft

Certain statements and commands found in Microsoft BASIC and Ap-
plesoft have slightly different uses. You should be aware of these differ-
ences when writing BASIC-80 programs. Those statements that differ
are listed below; for more information see Chapters 2 and 3 of this
manual.

FOR ... NEXT

INPUT

ON ERROR GOTO

RESUME

TEXT

GR

HGR

IF ... THEN ... ELSE

CALL

Changes in BASIC-80 Features

For the SoftCard version of BASIC-80, we have made a few very minor

changes to normal CP/M Microsoft BASIC features. If you are accus-

tomed to programming in Microsoft BASIC under CP/M, you will want

to note the following changes:

TRON/TROFF Statement name has been changed to TRACE/

NOTRACE. Operation of this statement re-
mains the same.

DELETE Statement name has been changed to DEL. Op-
eration of this statement remains the same.
WIDTH You now have the option to specify screen

height in addition to line width. Also, default
width is 40 columns for Apple video and 80 col-
umns for external terminals.

WAIT WAIT now monitors the status of an address
rather than of a machine input port. The effect,
however, remains the same.

CLOAD Not implemented.

4-7

CSAVE Not implemented.

NULL Not implemented.
INP Not implemented.
ouT Not implemented.

NOTE: BASIC-80 Version 5.0 programs transferred to the Apple
must be in ASCII format (i.e., saved with the A option).
They may not be in binary format.

Applesoft Features Not Supported

The following features found in Applesoft BASIC are not found in Mi-
crosoft BASIC.

FLASH SHLOAD

ESC A, B, C, D screen editing XDRAW
STORE DRAW
RECALL SCALE

IN# cassette LOAD
PR# cassette SAVE
HIMEM ... LOMEM ROT

P

CHAPTER 2
GENERAL INFORMATION ABOUT
BASIC-80

INITIALIZATION

MBASIC is the CP/M version of Microsoft BASIC that includes all
standard Applesoft extensions except high-resolution graphics. It is sup-
plied on both the 13-sector and the 16-sector disks in the SoftCard
package. The name of the file on both disks is MBASIC.COM. These
initialization instructions refer to MBASIC but may be used for GBASIC
simply by substituting GBASIC where MBASIC is typed. (For specific
instructions for initializing GBASIC, see Chapter 5.)

To load and run Microsoft BASIC-80, simply bring up the CP/M operat-
ing system in the usual manner (See Operations Manual). After the A>
prompt appears type:

MBASIC

and press the RETURN key. In a few seconds, a copyright notice will
appear, indicating BASIC-80 is ready for your command.

This sets at 3 the number of files that may be open at any one time
during the execution of a BASIC program (see /F option below), allows
all memory up to the start of FDOS in CP/M to be used (see /M option
below) and sets the maximum record size at 128.

The command line format below can be used in place of the simple
MBASIC command if you wish to set these options and/or automatically
RUN any program after initialization:

MBASIC [<filename>] [/F:<number of files>] [/M:<highest memory location>]
[/S:<maximum record size>] Press RETURN

The <filename> option allows you to RUN a program automatically
after initialization is complete. A default extension of .BAS is used if
none is supplied and the filename is less than nine characters long. This
allows BASIC programs to be executed in batch mode using the SUB-
MIT facility of CP/M. Such programs should include the SYSTEM state-
ment (See Chapter 3) to return to CP/M when they have finished, allow-
ing the next program in the batch stream to execute.

The /F:<number of files> option sets the number of disk files that may

4-9

be open at any one time during the execution of a BASIC program. Each
file data block allocated in this fashion requires 166 bytes plus 128 (or
number specified by /S:) bytes of memory. If the /F option is omitted,
the number of files defaults to 3. Number of files may be either decimal,
octal (preceded by &O) or hexadecimal (preceded by &H).

The /M:<highest memory location> option sets the highest memory
location that will be used by MBASIC. In some cases, it is desirable to
set the amount of memory well below the CP/M’s FDOS to reserve space
for assembly language subroutines. In all cases, <highest memory loca-
tion> should be below the start of FDOS (whose address is contained in
locations 6 and 7). If the /M option is omitted, all memory up to the start
of FDOS is used. The <highest memory location> number may be deci-
mal, octal (preceded by &O) or hexadecimal (preceded by &H).

The /S:<maximum record size> option sets the maximum size to be
allowed for random files. Any integer may be specified, including inte-
gers larger than 128.

When BASIC-80 is initialized, the system will reply:
BASIC-80Version 5.xx
(Apple CP /M Version)
Copyright 1980 (c) by Microsoft
Created: dd-Mmm-yy

xxxx Bytes free
Ok
Here are a few examples of the different initialization options:
A>MBASIC PAYROLL.BAS Use all memory and 3 files;
load and execute PAYROLL.BAS
A>MBASIC INVENT/F:6 Use all memory and 6 files;
load and execute INVENT.BAS
A>MBASIC /M:32768 Use first 32K of memory and 3 files

A>MBASIC DATACK/F:2/M:&H9000 Use first 36K of memory,
2 files and execute DATACK.BAS

MODES OF OPERATION

When BASIC-80 is initialized, it types the prompt "Ok.” "Ok” means
BASIC-80 is at command level, that is, it is ready to accept commands.
At this point, BASIC-80 may be used in either of two modes: the direct
mode or the indirect mode.

In the direct mode, BASIC commands and statements are not preceded
by line numbers. They are executed as they are entered. Results of
arithmetic and logical operations may be displayed immediately and

4-10

stored for later use, but the instructions themselves are lost after execu-
tion. This mode is useful for debugging and for using BASIC as a "cal-
_ culator” for quick computations that do not require a complete program.

The indirect mode is the mode used for entering programs. Program
lines are preceded by line numbers and are stored in memory. The
program stored in memory is executed by entering RUN command.

DISK FILES

Disk filenames follow the normal CP/M naming conventions. All file-
names may include A:, B:, C:, D:, E: or F: as the first two characters to
specify a disk drive, otherwise the currently selected drive is assumed.
The drive name, if specified, must be upper case (i.e., A: not a:). A default
extension of .BAS is used on LOAD, SAVE, MERGE and RUN filename
commands if no ”.” appears on the filename and the filename is less than
9 characters long.

LINE FORMAT

Program lines in a BASIC program have the following format (square
brackets indicate optional):

nnnnn BASIC statement [:BASIC statement...] <carriage return>

At the programmer’s option, more than one BASIC statement may be
placed on a line, but each statement on a line must be separated from
the last by a colon.

A BASIC program line always begins with a line number, ends with a
carriage return, and may contain a maximum of 255 characters.

It is possible to extend a logical line over more than one physical line
by use of the <line feed> or Control J. <Control J> lets you continue
typing a logical line on the next physical line without entering a <car-
riage return>.

Line Numbers

Every BASIC program line begins with a line number. Line numbers
indicate the order in which the program lines are stored in memory and
are also used as references when branching and editing. Line numbers
must be in the range 0 to 65529. A period (.) may be used in EDIT, LIST,
AUTO and DELETE commands to refer to the current line.

CHARACTER SET

The BASIC-80 character set is comprised of alphabetic characters, nu-
meric characters and special characters. The alphabetic characters in
BASIC-80 are the upper case and lower case letters of the alphabet.

4-11

The numeric characters in BASIC-80 are the digits 0 through 9.

The following special characters and terminal keys are recognized by
BASIC-80:

Character Name

Blank

Equal sign or assignment symbol

Plus sign

Minus sign

Asterisk or multiplication symbol

Slash or division symbol

Up arrow or exponentiation symbol

Left parenthesis

Right parenthesis

Percent

Number (or pound) sign

Dollar sign

Exclamation point

Left bracket

Right bracket

Comma

Period or decimal point

Single quotation mark (apostrophe)

Semicolon

Colon

Ampersand

Question mark

Less than

Greater than

Backslash or integer division symbol

At-sign

_ Underscore

<rubout> Deletes last character typed.

<escape> Escapes Edit Mode subcommands.
See Section 2.16.

<tab> Moves print position to next tab stop.
Tab stops are every eight columns.

TTETITeRgRT T S Y 4y

® - VAV

<carriage
return> Terminates input of a line.

Control Characters
The following control characters are in BASIC-80:

4-12

Control @ Rubout

~ Control-A Enters Edit Mode on the line being typed.

Control-B Backslash

Control-C Interrupts program execution and returns to BASIC-80
command level.

Control-G Rings the bell at the terminal.

Control-H Backspace. Deletes the last character typed. Same as «

Control-i Tab, Tab stops are every eight columns. Same as —

Control-J Line feed. Moves to next physical line.

Control-K Right square bracket

Control-0 Halts program output while execution continues. A sec-
ond Control-O restarts output.

Control-R Retypes the line that is currently being typed.

Control-S Suspends program execution.

Control-Q Resumes program execution after a Control-S.

Control-X Deletes the line that is currently being typed.

Control-Y Permits recovery from pressing RESET on a system with
an Autostart ROM.

- Tab. Same as Control-1.

- Backspace. Same as Control-H.

NOTE: Control-@ Control-B, Control-K and Control-U may be

redefined using the CONFIGIO utility.
CONSTANTS

Constants are the actual values BASIC uses during execution. There
are two types of constants: string and numeric.

A string constant is a sequence of up to 255 alphanumeric characters
enclosed in double quotation marks. Examples of string constants:

"HELLO*
*$25,000.00"
"Number of Employees”

Numeric constants are positive or negative numbers. Numeric con-
stants in BASIC cannot contain commas. There are five types of numeric
constants:

1. Integer “Whole numbers between —32768 and +32767.
constants Integer constants do not have decimal points.

4-13

2. Fixed Point
constants

3. Floating Point
constants

4. Hex constants

5. Octal
constants

Positive or negative real numbers, i.e., hum-
bers that contain decimal points.

Positive or negative numbers represented in
exponential form (similar to scientific notation).
A floating point constant consists of an optional-
ly signed integer or fixed point number (the
mantissa) followed by the letter E and an op-
tionally signed integer (the exponent). The ex-
ponent must be in the range —38 to +38.
Examples:

235.988E-7 = .0000235988

2359E6 = 2359000000
(Double precision floating point constants use
the letter D instead of E. See “Single and Dou-
ble Precision Form for Numeric Constants.”)

Hexadecimal numbers with the prefix &H. Ex-
amples:

&H76

&H32F

Octal numbers with the prefix &0 or &. Exam-
ples:

&0347

&1234

Single And Double Precision Form For Numeric Con-

stants

Numeric constants may be either single precision or double precision
numbers. With double precision, the numbers are stored with 16 digits
of precision, and printed with up to 16 digits.

A single precision constant is any numeric constant that has:
1. seven or fewer digits, or

2. exponential form using E, or
3. a trailing exclamation point (!)
A double precision constant is any numeric constant that has:
1. eight or more digits, or
2. exponential form using D, or
3. a trailing number sign (#)

4-14

Examples:
Single Precision Constants Double Precision Constants

46.8 345692811
—7.09E-06 —1.09432D-06
3489.0 3489.0#
22.5! 7654321.1234
VARIABLES

Variables are names used to represent values that are used in a BASIC
program. The value of a variable may be assigned explicitly by the
programmer, or it may be assigned as the result of calculations in the
program. Before a variable is assigned a value, its value is assumed to
be zero.

Variable Names And Declaration Characters

BASIC-80 variable names may be any length; up to 40 characters are
significant. The characters allowed in a variable name are letters and
numbers, and the decimal point. The first character must be a letter.
Special type declaration characters are also allowed — see below.

A variable name may not be a reserved word unless the reserved word
is embedded. If a variable begins with FN, it is assumed to be a call to
a user-defined function. Reserved words include all BASIC-80 com-
mands, statements, function nhames and operator names.

Variables may represent either a numeric value or a string. String
variable names are written with a dollar sign (§) as the last character.
For example: A$ = "SALES REPORT". The dollar sign is a variable type
declaration character, that is, it "declares” that the variable will repre-
sent a string. Numeric variable names may declare integer, single or
double precision values. The type declaration characters for these varia-
ble names are as follows:

% Integer variable
! Single precision variable
Double precision variable

The default type for a numeric variable name is single precision.
Examples of BASIC-80 variable names follow.

Pi# declares a double precision value
MINIMUM! declares a single precision value
LIMIT% declares an integer value

N$ declares a string value

ABC represents a single precision value

4-15

There is a second method by which variable types may be declared. The
BASIC-80 statements DEFINT, DEFSTR, DEFSNG and DEFDBL may
be included in a program to declare the types for certain variable names.
These statements are described in detail in Chapter 3.

Array Variables

An array is a group or table of values referenced by the same variable
name. Each element in an array is referenced by an array variable that
is subscripted with an integer or an integer expression. An array varia-
ble name has as many subscripts as there are dimensions in the array.
For example V(10) would reference a value in a one-dimension array,
T(1,4) would reference a value in a two-dimension array, and so on. The
maximum number of dimensions for an array is 255. The maximum
number of elements per dimension is 32767.

TYPE CONVERSION

When necessary, BASIC will convert a numeric constant from one type
to another. The following rules and examples should be kept in mind.

1. If a numeric constant of one type is set equal to a numeric varia-
ble of a different type, the number will be stored as the type
declared in the variable name. (If a string variable is set equal
to a numeric value or vice versa, a "Type mismatch” error oc-
curs.)

Example:

10 A% = 23.42
20 PRINT A%
RUN

23

2. During expression evaluation, all of the operands in an arithme-
tic or relational operation are converted to the same degree of
precision, i.e., that of the most precise operand. Also, the result
of an arithmetic operation is returned to this degree of precision.

Examples:

10 D# = 6#/7 The arithmetic was performed

20 PRINT D# in double precision and the

RUN result was returned in D#
.8571428571428571 as a double precision value.

10D =6#/7 The arithmetic was performed

20 PRINT D in double precision and the

RUN result was returned to D (single

4-16

.857143 precision variable), rounded and
printed as a single precision
value.

3. Logical operators convert their operands to integers and return
an integer result. Operands must be in the range —32768 to
32767 or an "Overflow” error occurs.

4. When a floating point value is converted to an integer, the frac-
tional portion is rounded.
Example:

10 C% = 55.88
20 PRINT C%
RUN

56

5. If a double precision variable is assigned a single precision val-
ue, only the first seven digits, rounded, of the converted number
will be valid. This is because only seven digits of accuracy were
supplied with the single precision value. The absolute value of
the difference between the printed double precision number and
the original single precision value will be less than 6.3E —8 times
the original single precision value.

Example:

10 A =204
20 B# = A
30 PRINT A;B#
RUN
2.04 2.039999961853027

EXPRESSIONS AND OPERATORS

An expression may be simply a string or numeric constant, or a varia-
ble, or it may combine constants and variables with operators to produce
a single value. Operators perform mathematical or logical operations on
values. The operators provided by BASIC-80 may be divided into four
categories:

1. Arithmetic
2. Relational
3. Logical

4. Functional

4-17

Arithmetic Operators
The arithmetic operators, in order of precedence, are:

Operator Operation Sample Expression
t Exponentiation XY
- Negation -X
*/ Multiplication, Floating X*Y
Point Division X/Y
+,- Addition, Subtraction X+Y

To change the order in which the operations are performed, use paren-
theses. Operations within parentheses are performed first. Inside paren-
theses, the usual order of operations is maintained. Here are some sam-
ple algebraic expressions and their BASIC counterparts.

Algebraic Expression BASIC Expression

X+2Y X+Y*2

_Y _

X—3 X—Y/Z
XY X*Y/Z

Z
X+Y X+Y)/Z

Z

X2y (X12)1Y
xY? X1(Y12)
X(—Y) X*(—Y)

Two consecutive operators
must be separated
by parentheses.

Integer Division And Modulus Arithmetic

Two additional operators are available in BASIC-80: Integer division
and modulus arithmetic.

Integer division is denoted by the backslash or Control-B on the Apple

4-18

keyboard. (\). The operands are rounded to integers (must be in the
range —32768 to 32767) before the division is performed, and the quo-
tient is truncated to an integer. For example:

104 =2
25.6816.99 = 3

The precedence of integer division is just after multiplication and float-
ing point division.

Modulus arithmetic is denoted by the operator MOD. It gives the
integer value that is the remainder of an integer division. For example:

10.4 MOD 4 = 2 (10/4=2 with a remainder 2)
25.68 MOD 6.99 = 5 (26/7=3 with a remainder 5)

The precedence of modulus arithmetic is just after integer division.

Overflow And Division By Zero

If, during the evaluation of an expression, a division by zero is encoun-
tered, the “Division by zero” error message is displayed, machine infini-
ty with the sign of the numerator is supplied as the result of the division,
and execution continues. If the evaluation of an exponentiation results
in zero being raised to a negative power, the "Division by zero” error
message is displayed, positive machine infinity is supplied as the result
of the exponentiation, and execution continues.

If overflow occurs, the "Overflow” error message is displayed, machine
infinity with the algebraically correct sign is supplied as the result, and
execution continues.

Relational Operators

Relational operators are used to compare two values. The result of the
comparison is either "true” (—1) or "false” (0). This result may then be
used to make a decision regarding program flow. (See IF, Chapter 3.)

Operator Relation Tested Expression
= Equality X=Y

<> Inequality X<>Y

< Less than X<Y

> Greater than x>Y

<= Less than or equal to X<=Y

>= Greater than or equal to X>=Y

(The equal sign is also used to assign a value to a variable. See LET,
Chapter 3.)

When arithmetic and relational operators are combined in one ex-
pression, the arithmetic is always performed first. For example, the

expression
X+Y < (T-1)/2

is true if the value of X plus Y is less than the value of T-1 divided by
Z. More examples:

IF SIN(X)<0 GOTO 1000
IF 1MOD J <> O THEN K=K+1

Logical Operators

Logical operators perform tests on multiple relations, bit manipulation,
or Boolean operations. The logical operator returns a bitwise result
which is either “true” (not zero) or "false” (zero). In an expression,
logical operations are performed after arithmetic and relational oper-
ations. The outcome of a logical operation is determined as shown in the
following table. The operators are listed in order of precedence.

NOT

NOT X
0
1

(=N

AND
XANDY

OO =
OO M
OOO M

OR
XORY

OO =g
OO
O =t kb b

XOR
XXORY

OO =g
OO M
O = O

4-20

IMP

X Y X IMPY
1 1 1
1 0 0
0 1 1
0 0 1
EQV
X Y XEQVY
1 1 1
1 0 0
0 1 0
0 0 1

Just as the relational operators can be used to make decisions regarding
program flow, logical operators can connect two or more relations and
return a true or false value to be used in a decision (see IF, Chapter 3).
For example:

IF D<200 AND F<4 THEN 80
IF 1>10 OR K<O THEN 50
IF NOT P THEN 100

Logical operators work by converting their operands to sixteen bit,
signed, two’s complement integers in the range —32768 to +32767. (If
the operands are not in this range, an error results.) If both operands are
supplied as 0 or —1, logical operators return 0 or —1. The given oper-
ation is performed on these integers in bitwise fashion, i.e., each bit of
the result is determined by the corresponding bits in the two operands.
Thus, it is possible to use logical operators to test bytes for a particular
bit pattern. For instance, the AND operator may be used to “mask” all
but one of the bits of a status byte at a machine I/0 port. The OR
operator may be used to “merge” two bytes to create a particular binary
value. The following examples will help demonstrate how the logical
operators work.

63 AND 16=16 63 = binary 111111 and 16 = binary
10000, so 63 AND 16 = 16

15 AND 14=14 15 = binary 1111 and 14 = binary 1110,
so 15 AND 14 = 14 (binary 1110)

—1 AND 8=8 —1 = binary 1111111111111111 and
8 = binary 1000,s0 —1 AND 8 = 8
4 OR2=6 4 = binary 100 and 2 = binary 10,

80 4 OR 2 = 6 (binary 110)

4-21

10 OR 10=10 10 = binary 1010, so 1010 OR 1010 =
1010 (10)

—10R —2=-1 —1 = binary 1111111111111111 and
—2 = binary 1111111111111110,
so —1 OR —2 = —1. The bit
complement of sixteen zeros is
sixteen ones, which is the
two’s complement representation of —1.

NOT X=—(X+1) The two’s complement of any integer
is the bit complement plus one.

Functional Operators

A function is used in an expression to call a predetermined operation
that is to be performed on an operand. BASIC-80 has “intrinsic” func-
tions that reside in the system, such as SQR (square root) or SIN (sine).
All of BASIC-80’s intrinsic functions are described in Chapter 4. BASIC-
80 also allows "user defined” functions that are written by the program-
mer. See DEF FN, Chapter 3.

String Operations
Strings may be concatenated using +. For example:

10 A$="FILE" : B$="NAME"
20 PRINT A$ + B$

30 PRINT "NEW ~ + A$ + B$
RUN

FILENAME

NEW FILENAME

Strings may be compared using the same relational operators that are
used with numbers:

= <> < > <K= >=
String comparisons are made by taking one character at a time from
each string and comparing the ASCII codes. If all the ASCII codes are
the same, the strings are equal. If the ASCII codes differ, the lower code
number precedes the higher. If, during string comparison, the end of one
string is reached, the shorter string is said to be smaller. Leading and
trailing blanks are significant. Examples:

"AA" < "AB"

"FILENAME" = "FILENAME"

Y& > K#

“CL * > "CL”

"kg” > "KG”

4-22

"SMYTH” < "SMYTHE"
B$ < *9/12/78" where B$ = "8/12/78"

Thus, string comparisons can be used to test string values or to alphabe-
tize strings. All string constants used in comparison expressions must be
enclosed in quotation marks.

INPUT EDITING

If an incorrect character is entered as a line is being typed, it can be
deleted with the RUBOUT (Control-A) key or with Control-H. Rubout or
Control-A surrounds the deleted character(s) with backslashes, and Con-
trol-H has the effect of backspacing over a character and erasing it. Once
a character(s) has been deleted, simply continue typing the line as de-
sired.

To delete a line that is in the process of being typed, type Control-X. A
carriage return is executed automatically after the line is deleted.

To correct program lines for a program that is currently in memory,
simply retype the line using the same line number. BASIC-80 will auto-
matically replace the old line with the new line.

More sophisticated editing capabilities are provided. See EDIT, Chap-
ter 3.

To delete the entire program that is currently residing in memory,
enter the NEW command. (See Chapter 3) NEW is usually used to clear
memory prior to entering a new program.

ERROR MESSAGES

If BASIC-80 detects an error that causes program execution to termi-
nate, an error message is printed. For a complete list of BASIC-80 error
codes and error messages, see Appendix E.

4-23

CHAPTER 3

BASIC-80 COMMANDS AND
STATEMENTS

All of the BASIC-80 commands and statements are described in this
chapter. Each description is formatted as follows:

Syntax: Shows the correct syntax for the instruction. See below for

syntax notation.

Purpose: Tells what the instruction is used for.
Remarks: Describes in detail how the instruction is used.
Example: Shows sample programs or program segments that demon-

strate the use of the instruction.

Syntax Notation

Wherever the syntax for a statement or command is given, the follow-
ing rules apply:

1.
2.

Items in capital letters must be input as shown.

Items in lower case letters enclosed in angle brackets (< >) are
to be supplied by the user.

Items in square brackets ([]) are optional.

4. All punctuation except angle brackets and square brackets (i.e.,

6.

7.

commas, parentheses, semicolons, hyphens, equal signs) must be
included where shown.

Items followed by an ellipsis (...) may be repeated any number of
times (up to the length of the line).

Items separated by a vertical bar (|) are mutually exclusive;
choose one.

All reserved words must be preceded by and followed by a space.

AUTO
Syntax: AUTO [<line number>[,<increment>]]
Purpose: To generate a line number automatically after every car-

riage return.

4-24

TN

Remarks:

Example:

BEEP
Syntax:
Purpose:

Remarks:

Example:

CALL
Syntax:
Purpose:

Syntax 2:

Purpose:

Remarks:

AUTO begins numbering at <line number> and incre-
ments each subsequent line number by <increment>. The
default for both values is 10. If <line number> is followed
by a comma but <increment> is not specified, the last incre-
ment specified in an AUTO command is assumed.

If AUTO generates a line number that is already being
used, an asterisk is printed after the number to warn the
user that any input will replace the existing line. However,
typing a carriage return immediately after the asterisk will
save the line and generate the next line number.

AUTO isterminated by typing Control-C. The line in which
Control-C is typed is not saved. After Control-C is typed,
BASIC returns to command level.

AUTO 100,50 Generates line numbers 100, 150, 200 ...
AUTO Generates line numbers 10, 20, 30, 40 ...

BEEP <pitch>, <duration>
To create a tone of specified pitch and duration.
0 is the highest <pitch>; 255 is the lowest.

0 is the shortest <duration>; 255 is the longest. A <dura-
tion> of 255 lasts approximately 1 second.

BEEP is intended for sound effects purposes. No attempt
has been made to match specific <pitches> or <durations>
with specific musical notes or note lengths.

10 BEEP PDL(0), PDL(1): GOTO 10

CALL <variable name>[(<argument list>)]

To call a Z-80 assembly language subroutine.

CALL 9% <variable name>[(<argument>)]

To call a 6502 assembly language subroutine.

The CALL statement is one way to transfer program flow
to an assembly language subroutine. (See also the USR
function, Chapter 4)

<variable name> contains an address that is the starting
point in memory of the subroutine. <variable name> may
not be an array variable name. <argument list> contains

4-25

Example:

CHAIN
Syntax:

Purpose:

Remarks:

the arguments that are passed to the assembly language
subroutine.

In Syntax 2, the per cent symbol (%) preceding the <varia-
ble name> allows the CALL statement to call a 6502 assem-
bly language subroutine.

A 6502 subroutine call may have up to three parameters of
one byte each. The first (if any) value is placed in the 6502
A register, the next in the X register and the last in the Y
register.

The CALL statement generates the same calling sequence
used by Microsoft’s FORTRAN, COBOL and BASIC com-
pilers.

110 MYROUT=&HDOOO
120 CALL MYROUT

130 BELL=&HFF3A
140 CALL % BELL

CHAIN [MERGE] <filename>[,[<line number exp>]
[,ALL][,DELETE<range>]

To call a program and pass variables to it from the current
program.

<filename> is the name of the program that is called. Ex-
ample:
CHAIN"PROG1~

<line number exp> is a line number or an expression that

evaluates to a line number in the called program. It is the

starting point for execution of the called program. If it is

omitted, execution begins at the first line. Example:
CHAIN"PROG1*,1000

<line number exp> is not affected by a RENUM command.

With the ALL option, every variable in the current pro-
gram is passed to the called program. If the ALL option is
omitted, the current program must contain a COMMON
statement to list the variables that are passed. See COM-
MON statement. Example:

CHAIN-PROG1*,1000,ALL

If the MERGE option is included, it allows a subroutine to
be brought into the BASIC program as an overlay. That is,

4-26

NOTE:

CLEAR
Syntax:
Purpose:

Remarks:

NOTE:

Examples:

CLOSE
Syntax:

a MERGE operation is performed with the current pro-
gram and the called program. The called program must be
an ASCII file if it is to be MERGEd. Example:

CHAIN MERGE"OVRLAY*,1000

After an overlay is brought in, it is usually desirable to
delete it so that a new overlay may be brought in. To do
this, use the DELETE option. Example:

CHAIN MERGE"OVRLAY2*,1000,DELETE 1000-5000

The line numbers in <range> are affected by the RENUM
command.

If the MERGE option is omitted, CHAIN does not preserve
variable types or user-defined functions for use by the
chained program. That is, any DEFINT, DEFSNG,
DEFDBL, DEFSTR, or DEFFN statements containing
shared variables must be restated in the chained program.

CLEAR [,[<expressionl>][,<expression2>]]

To set all numeric variables to zero and all string variables
to null; and, optionally, to set the end of memory and the
amount of stack space.

<expressionl> is a memory location which, if specified,
sets the highest location available for use by BASIC-80.

<expression2> sets aside stack space for BASIC. The de-
fault is 256 bytes or one-eighth of the available memory,
whichever is smaller.

In previous versions of BASIC-80, <expressionl> set the
amount of string space, and <expression2> set the end of
memory. BASIC-80, release 5.0 and later, allocates string
space dynamically. An "Out of string space” error occurs
only if there is no free memory left for BASIC to use.

CLEAR

CLEAR ,32768
CLEAR ,,2000
CLEAR,32768,2000

CLOSE[# I<file number>[,[#]<file number...>]

4-27

Purpose:
Remarks:

Example:

COLOR
Syntax:

Purpose:

Remarks:

Example:

To conclude I/0 to a disk file.

<file number> is the number under which the file was
OPENed. A CLOSE with no arguments closes all open files.

The association between a particular file and file number
terminates upon execution of a CLOSE. The file may then
be reOPENed using the same or a different file number;
likewise, that file number may now be reused to OPEN any
file.

A CLOSE for a sequential output file writes the final buffer
of output.

The END statement and the NEW command always
CLOSE all disk files automatically. (STOP does not close
disk files.)

See Appendix B.

COLOR = <color number>
where <color number> is an integer in the range 0-15.

To set the color for plotting in low resolution graphics
mode.

The colors available and their numbers are:

0 black 8 brown
1 magenta 9 orange
2 dark blue 10 gray
3 purple 11 pink
4 dark green 12 green
5 gray 13 yellow
6 medium blue 14 aqua
7 light blue 15 white

<color number> may be specified in the GR statement.
(See GR). If it is not specified in GR it is set to zero when
GR is set until another color is specified with the COLOR
statement.

To find out the COLOR of a given point on the screen, use
the SCRN function.

COLOR may be used in low resolution graphics mode only.

10 GR
20 COLOR=13

4-28

COMMON
Syntax:
Purpose:
Remarks:

Example:

CONT
Syntax:
Purpose:

Remarks:

Example:

DATA

Syntax:
.

COMMON <list of variables>
To pass variables to a CHAINed program.

The COMMON statement is used in conjunction with the
CHAIN statement. COMMON statements may appear any-
where in a program, though it is recommended that they
appear at the beginning. The same variable cannot appear
in more than one COMMON statement. Array variables
are specified by appending "()* to the variable name. If all
variables are to be passed, use CHAIN with the ALL option
and omit the COMMON statement.

100 COMMON AB,C,D(),G$
110 CHAIN "PROG3",10

CONT

To continue program execution after a Control-C has been
typed, or a STOP or END statement has been executed.

Execution resumes at the point where the break occurred.
If the break occurred after a prompt from an INPUT state-
ment, execution continues with the reprinting of the
prompt (? or prompt string).

CONT is usually used in conjunction with STOP for debug-
ging. When execution is stopped, intermediate values may
be examined and changed using direct mode statements.
Execution may be resumed with CONT or a direct mode
GOTO, which resumes execution at a specified line number.
CONT may also be used to continue execution after an
error.

CONT is invalid if the program has been edited during the
break.

See example for STOP statement.

DATA <list of constants>

4-29

Purpose:

Remarks:

Example:

DEF FN
Syntax:
Purpose:
Remarks:

To store the numeric and string constants that are ac-
cessed by the program’s READ statement(s). (See READ.)

DATA statements are nonexecutable and may be placed
anywhere in the program. A DATA statement may contain
as many constants as will fit on a line (separated by com-
mas), and any number of DATA statements may be used in
a program. The READ statements access the DATA state-
ments in order (by line number) and the data contained
therein may be thought of as one continuous list of items,
regardless of how many items are on a line or where the
lines are placed in the program.

<list of constants> may contain numeric constants in any
format, i.e., fixed point, floating point or integer. (No nu-
meric expressions are allowed in the list.) String constants
in DATA statements must be surrounded by double quota-
tion marks only if they contain commas, colons or signifi-
cant leading or trailing spaces. Otherwise, quotation marks
are not needed.

The variable type (numeric or string) given in the READ
statement must agree with the corresponding constant in
the DATA statement.

DATA statements may be reread from the beginning by
use of the RESTORE statement.

See examples for READ statement.

DEF FN<name>[(<parameter list>)] = <function definition>
To define and name a function that is written by the user.

<name> must be a legal variable name. This name, preced-
ed by FN, becomes the name of the function. <parameter
list> is comprised of those variable names in the function
definition that are to be replaced when the function is
called. The items in the list are separated by commas.
<function definition> is an expression that performs the
operation of the function. It is limited to one line. Variable
names that appear in this expression serve only to define
the function; they do not affect program variables that
have the same name. A variable name used in a function
definition may or may not appear in the parameter list. If
it does, the value of the parameter is supplied when the
function is called. Otherwise, the current value of the varia-

ble is used. '

4-30

The variables in the parameter list represent, on a one-to-
one basis, the argument variables or values that will be
given in the function call.

User-defined functions may be numeric or string. If a type
is specified in the function name, the value of the ex-
pression is forced to that type before it is returned to the
calling statement. If a type is specified in the function name
and the argument type does not match, a "Type mismatch”
€rror occurs.

A DEF FN statement must be executed before the function
it defines may be called. If a function is called before it has
been defined, an “Undefined user function” error occurs.
DEF FN is illegal in the direct mode.

Example:
410 DEF FNAB(X,Y)=X13/Y12
420 T=FNAB(l,J)
Line ;110 defines the function FNAB. The function is called
in line 420.

DEFINT/SNG/DBL/STR

Syntax: DEF<type> <range(s) of letters>
where <type> is INT, SNG, DBL, or STR

Purpose: To declare variable types as integer, single precision, dou-
ble precision, or string.

Remarks: A DEFtype statement declares that the variable names
beginning with the letter(s) specified will be that type varia-
ble. However, a type declaration character always takes
precedence over a DEFtype statement in the typing of a
variable.

If no type declaration statements are encountered, BASIC-
80 assumes all variables without declaration characters are
single precision variables.

Examples: 10 DEFDBL L-P All variables beginning with the letters

L, M, N, O, and P will be double precision
variables.

10 DEFSTR A All variables beginning with the letter A
will be string variables.

4-31

10 DEFINT I-N,W-Z
All variable beginning with the letters I,
J,K,L, M, N, W, X, Y, Z will be integer
variables.

DEF USR
Syntax: DEF USR[<digit>]=<integer expression>

Purpose: To specify the starting address of an assembly language
subroutine.

Remarks: <digit> may be any digit from 0 to 9. The digit corresponds
to the number of the USR routine whose address is being
specified. If <digit> is omitted, DEF USRO is assumed. The
value of <integer expression> is the starting address of the
USR routine. See Appendix C, Assembly Language Subrou-
tines.

Any number of DEF USR statements may appear in a pro-

gram to redefine subroutine starting addresses, thus allow-
ing access to as many subroutines as necessary.

Example:
200 DEF USRO=24000
210 X=USRO(Yt2/2.89)
DEL
Syntax: DEL[<line number>][-<line number>]

Purpose: To delete program lines.

Remarks: BASIC-80 always returns to command level after a DEL is
executed. If <line number> does not exist, an "Illegal func-
tion call” error occurs.

DELETE may be used in place of DEL. DEL entered in a
program will list as DELETE.

Examples: DEL 40 Deletes line 40
DEL 40-100 Deletes lines 40 through
100, inclusive
DEL-40 Deletes all lines up to

and including line 40

4-32

DIM
Syntax:
Purpose:

Remarks:

Example:

EDIT
Syntax:
Purpose:

Remarks:

DIM <list of subscripted variables>

To specify the maximum values for array variable sub-
scripts and allocate storage accordingly.

If an array variable name is used without a DIM state-
ment, the maximum value of its subscript(s) is assumed to
be 10. If a subscript is used that is greadter than the max-
imum specified, a "Subscript out of range” error occurs.
The minimum value for a subscript is always 0, unless
otherwise specified with the OPTION BASE statement (see
OPTION BASE).

The DIM statement sets all the elements of the specified
arrays to an initial value of zero.

10 DIM A(20)

20 FORI=0TO 20
30 READ A()

40 NEXT 1

EDIT <line number>
To enter Edit Mode at the specified line.

In Edit Mode, it is possible to edit portions of a line without
retyping the entire line. Upon entering Edit Mode, BASIC-
80 types the line number of the line to be edited, then it
types a space and waits for an Edit Mode subcommand.

Edit Mode Subcommands

Edit Mode subcommands are used to move the cursor or to
insert, delete, replace, or search for text within a line. The
subcommands are not echoed. Most of the Edit Mode sub-
commands may be preceded by an integer which causes the
command to be executed that number of times. When a
preceding integer is not specified, it is assumed to be 1.

Edit Mode subcommands may be categorized according to
the following functions:

4-33

Moving the cursor
Inserting text
Deleting text
Finding text
Replacing text
Ending and restarting Edit Mode
NOTE
In the descriptions that follow, <ch> represents any
character, <text> represents a string of characters
of arbitrary length, [i] represents an optional integer

(the default is 1), and $ represents the Escape (or
Altmode) key.

1. Moving the Cursor

Space Use the space bar to move the cursor to the right.
[i]Space moves the cursor i spaces to the right. Charac-
ters are printed as you space over them.

IS S o

— In Edit Mode, [i]moves the cursor i spaces to the left
(backspaces). Characters are printed as you backspace
over them.

2. Inserting Text

| I<text>$ inserts <text> at the current cursor position.
The inserted characters are printed on the terminal. To
terminate insertion, type Escape. If Carriage Return is
typed during an Insert command, the effect is the same
as typing Escape and then Carriage Return. During an
Insert command, the Rubout (Control-A) or left arrow
(<) key on the terminal may be used to delete characters
to the left of the cursor. If an attempt is made to insert
a character that will make the line longer than 255 char-
acters, a bell (Control-G) is typed and the character is not
printed.

X The X subcommand is used to extend the line. X moves
the cursor to the end of the line, goes into insert mode,
and allows insertion of text as if an Insert command had
been given. When you are finished extending the line,
type Escape or Carriage Return.

3. Deleting Text
D [iID deletes i characters to the right of the cursor. The ’

4-34

deleted characters are echoed between backslashes, and
the cursor is positioned to the right of the last character
deleted. If there are fewer than i characters to the right
of the cursor, iD deletes the remainder of the line.

H deletes all characters to the right of the cursor and
then automatically enters insert mode. H is useful for
replacing statements at the end of a line.

Finding Text

S

The subcommand [i]S<ch> searches for the ith occur-
rence of <ch> and positions the cursor before it. The
character at the current cursor position is not included
in the search. If <ch> is not found, the cursor will stop
at the end of the line. All characters passed over during
the search are printed.

The subcommand [iJK<ch> is similar to [i]S<ch>, except
all the characters passed over in the search are deleted.
The cursor is positioned before <ch>, and the deleted
characters are enclosed in backslashes.

Replacing Text

c

The subcommand C<ch> changes the next character to
<ch>. If you wish to change the next i characters, use
the subcommand iC, followed by i characters. After the
ith new character is typed, change mode is exited and
you will return to Edit Mode.

Ending and Restarting Edit Mode

<er>

Typing Carriage Return prints the remainder of the
line, saves the changes you made and exits Edit Mode.

The E subcommand has the same effect as Carriage Re-
turn, except the remainder of the line is not printed.

The Q subcommand returns to BASIC-80 command
level, without saving any of the changes that were made
to the line during Edit Mode.

The L subcommand lists the remainder of the line (sav-
ing any changes made so far) and repositions the cursor
at the beginning of the line, still in Edit Mode. L is
usually used to list the line when you first enter Edit
Mode.

The A subcommand lets you begin editing a line over
again. It restores the original line and repositions the
cursor at the beginning.

4-35

NOTE

If BASIC-80 receives an unrecognizable command
or illegal character while in Edit Mode, it prints a

bell (Control-G) and the command or character is
ignored.

Syntax Errors

When a Syntax Error is encountered during execution of
a program, BASIC-80 automatically enters Edit Mode at
the line that caused the error. For example:

10 K = 2(4)

RUN

?Syntax error in 10
10

When you finish editing the line and type Carriage Return
(or the E subcommand), BASIC-80 reinserts the line, which
causes all variable values to be lost. To preserve the varia-
ble values for examination , first exit Edit Mode with the
Q subcommand. BASIC-80 will return to command level,
and all variable values will be preserved.

Control-A

To enter Edit Mode on the line you are currently typing,
type Control-A. BASIC-80 responds with a carriage return,
an exclamation point (!) and a space. The cursor will be
positioned at the first character in the line. Proceed by
typing an Edit Mode subcommand.

NOTE

Remember, if you have just entered a line and wish
to go back and edit it, the command "EDIT ." will
enter Edit Mode at the current line. (The line num-
ber symbol ".” always refers to the current line.)

END
Syntax: END

Purpose: To terminate program execution, close all files and return
to command level.

Remarks: END statements may be placed anywhere in the program
to terminate execution. Unlike the STOP statement, END
does not cause a BREAK message to be printed. An END
statement at the end of a program is optional. BASIC-80 —~

4-36

Example:

ERASE
Syntax:
Purpose:

Remarks:

Example:

always returns to command level after an END is executed.
520 IF K>1000 THEN END ELSE GOTO 20

ERASE <list of array variables>
To eliminate arrays from a program.

Arrays may be redimensioned after they are ERASEd, or
the previously allocated array space in memory may be
used for other purposes. If an attempt is made to redimen-
sion an array without first ERASEing it, a “Redimensioned
array"” error occurs.

450 ERASE A,B
460 DIM B(99)

ERR AND ERL VARIABLES

When an error handling subroutine is entered, the varia-
ble ERR contains the error code for the error, and the
variable ERL contains the line number of the line in which
the error was detected. The ERR and ERL variables are
usually used in IF..THEN statements to direct program
flow in the error trap routine.

If the statement that caused the error was a direct mode
statement, ERL will contain 65535. To test if an error oc-
curred in a direct statement, use IF 65535 = ERL THEN ...
Otherwise, use

IF ERR = error code THEN ...

IF ERL = line number THEN ...

If the line number is not on the right side of the relational
operator, it cannot be renumbered by RENUM. Because
ERL and ERR are reserved variables, neither may appear
to the left of the equal sign in a LET (assignment) state-
ment. BASIC-80’s error codes are listed in Appendix E.

4-37

ERROR
Syntax:
Purpose:

Remarks:

Example 1:

Example 2:

ERROR <integer expression>

1) To simulate the occurrence of a BASIC-80 error; or 2)
to allow error codes to be defined by the user.

The value of <integer expression> must be greater than 0
and less than 255. If the value of <integer expression>
equals an error code already in use by BASIC-80 (see Ap-
pendix E), the ERROR statement will simulate the occur-
rence of that error, and the corresponding error message
will be printed. (See Example 1.)

To define your own error code, use a value that is greater
than any used by BASIC-80's error codes. (It is preferable
to use the highest available values, so compatibility may be
maintained when more error codes are added to BASIC-80.)
This user-defined error code may then be conveniently han-
dled in an error trap routine. (See Example 2.)

If an ERROR statement specifies a code for which no error
message has been defined, BASIC-80 responds with the
message UNPRINTABLE ERROR. Execution of an ER-
ROR statement for which there is no error trap routine
causes an error message to be printed and execution to halt.

LIST

10S =10

20T =5

30 ERRORS + T

40 END

Ok

RUN

String too long in iine 30

Or, in direct mode:

Ok

ERROR 15 (you type this line)

String too long (BASIC-80 types this line)
Ok

110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BET";8
130 IF B > 5000 THEN ERROR 210

4-38

FIELD

Syntax:
Purpose:

Remarks:

Example:

NOTE:

FILES
Syntax:

4.00 IF ERR = 210 THEN PRINT "HOUSE LIMIT IS $5000"
410 IF ERL = 130 THEN RESUME 120

FIELD[#]<file number>, <field width> AS <string variable>...
To allocate space for variables in a random file buffer.

To get data out of a random buffer after a GET or to enter
data before a PUT, a FIELD statement must have been
executed. <file number> is the number under which the file
was OPENed. <field width> is the number of characters to
be allocated to <string variable>. For example,

FIELD 1, 20 AS N§, 10 AS ID$, 40 AS ADD$

allocates the first 20 positions (bytes) in the random file
buffer to the string variable N$, the next 10 positions to
ID$, and the next 40 positions to ADD$. FIELD does NOT
place any data in the random file buffer. (See LSET/RSET
and GET.)

The total number of bytes allocated in a FIELD statement
must not exceed the record length that was specified when
the file was OPENed. Otherwise, a "Field overflow” error
occurs. (The default record length is 128.) Any number of
FIELD statements may be executed for the same file, and
all FIELD statements that have been executed are in effect
at the same time.

See Appendix B.

Do not use a FIELDed variable name in an INPUT or
LET statement. Once a variable name is FIELDed, it
points to the correct place in the random file buffer. If a
subsequent INPUT or LET statement with that variable
name is executed, the variable’s pointer is moved to string
space.

FILES[<filename>]

4-39

Purpose: To print the names of files residing on the current disk.

Remarks: If <filename> is omitted, all the files on the currently se-
lected drive will be listed. <filename> is a string formula
which may contain question marks (?) to match any char-
acter in the filename or extension. An asterisk (*) as the
first character of the filename or extension will match any
file or any extension.

Examples: FILES
FILES ~*.BAS”
FILES "B:*.*"
FILES “TEST?.BAS”

FOR..NEXT

Syntax: FOR <variable>=x TO y [STEP z]
NEXT [<variable>][,<variable>...]
where x, y and z are numeric expressions.

Purpose: To allow a series of instructions to be performed in a loop
a given number of times.

Remarks: <variable> is used as a counter. The first numeric ex-

pression (x) is the initial value of the counter. The second
numeric expression (y) is the final value of the counter. The
program lines following the FOR statement are executed
until the NEXT statement is encountered. Then the counter
is incremented by the amount specified by STEP. A check
is performed to see if the value of the counter is now
greater than the final value (y). If it is not greater, BASIC-
80 branches back to the statement after the FOR statement
and the process is repeated. If it is greater, execution con-
tinues with the statement following the NEXT statement.
This is a FOR...NEXT loop. If STEP is not specified, the
increment is assumed to be one. If STEP is negative, the
final value of the counter is set to be less than the initial
value. The counter is decremented each time through the
loop, and the loop is executed until the counter is less than
the final value.

The body of the loop is skipped if the initial value of the
loop times the sign of the step exceeds the final value times
the sign of the step.

4-40

Example 1:

Example 2:

Example 3:

There must be one and only one NEXT for every FOR.

Nested Loops

FOR..NEXT loops may be nested, that is, a FOR..NEXT
loop may be placed within the context of another FOR..-
.NEXT loop. When loops are nested, each loop must have
a unique variable name as its counter. The NEXT state-
ment for the inside loop must appear before that for the
outside loop. If nested loops have the same end point, a
single NEXT statement may be used for all of them if the
variable for each FOR is specified in the NEXT.

The variable(s) in the NEXT statement may be omitted, in
which case the NEXT statement will match the most recent
FOR statement. If a NEXT statement is encountered before
its corresponding FOR statement, a "NEXT without FOR"
error message is issued and execution is terminated.

10 K=10

20 FOR I=1 TO K STEP 2
30 PRINT |;

40 K=K+10

50 PRINT K

60 NEXT

RUN

9&0\10’10\)-—-
L5
o

10 J=0

20 FORI=1TOJ

30 PRINT {

40 NEXT |

In this example, the loop does not execute because the
initial value of the loop exceeds the final value.

10 1=5
20 FOR =1 TO I1+5
30 PRINT §;
40 NEXT
RUN
12345678910
Ok
In this example, the loop executes ten times. The final val-
ue for the loop variable is always set before the initial value

4-41

Example 4:

is set. (Note: Previous versions of BASIC-80 set the initial
value of the loop variable before setting the final value; i.e.,
the above loop would have executed six times.)

10 FOR I=1 TO 20

20 IF | 10 GOTO 100

30 NEXT

40 GOTO 110

100 NEXT

110 END
This program would result in a NEXT without FOR error.
There may be one and only one NEXT for every FOR.

GET

Syntax 1: GET [#]<file number>[,<record number>]

Purpose 1: To read a record from a random disk file into a random
buffer.

Syntax 2. GET <keyboard character>

Purpose 2: To read a single character from the keyboard.

Remarks: Syntax 1: <file number> is the number under which the

file was OPENed. If <record number> is omitted, the next
record (after the last GET) is read into the buffer. The
largest possible record number 32767. After a GET state-
ment, INPUT# and LINE INPUT# may be done to read
characters from the random file buffer.
Syntax 2: <keyboard character> is not displayed on the
screen. It is not necessary to press the RETURN key. If
Control @ is the <keyboard character>, it returns the null
character. The result of GETting a left-arrow or Control H
may also PRINT as if the null character were being re-
turned.

Examples: For examples of syntax 1, see Appendix B.

Syntax 2
10 GET A$:PRINT A$;
20 GOTO 10
GOSUB...RETURN
Syntax:

GOSUB <line number>

RETURN
4-42

Purpose:

Remarks:

Example:

GOTO
Syntax:
Purpose:

Remarks:

Example:

To branch to and return from a subroutine.
<line number> is the first line of the subroutine.

A subroutine may be called any number of times in a pro-
gram, and a subroutine may be called from within another
subroutine. Such nesting of subroutines is limited only by
available memory.

The RETURN statement(s) in a subroutine cause BASIC-
80 to branch back to the statement following the most re-
cent GOSUB statement. A subroutine may contain more
than one RETURN statement, should logic dictate a return
at different points in the subroutine. Subroutines may ap-
pear anywhere in the program, but it is recommended that
the subroutine be readily distinguishable from the main
program. To prevent inadvertant entry into the subroutine,
it may be preceded by a STOP, END, or GOTO statement
that directs program control around the subroutine. Also,
see POP.

10 GOsuB 40

20 PRINT "BACK FROM SUBROUTINE”
30 END

40 PRINT "SUBROUTINE";
50 PRINT ~ IN*;

60 PRINT * PROGRESS”
70 RETURN

RUN

SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

GOTO <line number>

To branch unconditionally out of the normal program se-
quence to a specified line number.

If <line number> is an executable statement, that state-
ment and those following are executed. If it is a nonexecu-
table statement, execution proceeds at the first executable
statement encountered after <line number>.

LIST
10 READ R
20 PRINT "R =";R,

4-43

GR
Syntax:

Purpose:
Remarks:

Examples:

HLIN
Syntax:

30 A = 3.14*Rs2
40 PRINT "AREA ="A

50 GOTO 10

60 DATA 5,7,12

Ok

RUN

R=5 AREA = 78.5
R=7 AREA = 153.86
R =12 AREA = 452.16
70ut of data in 10

Ok

GR <screen number>, <color number>
where <screen number> is an integer in the range 0-1 and
<color number> is an integer in the range 0-15.

To initialize low-resolution graphics mode.
<screen number> specifies the mode to be used as follows:

number screen mode
0 40x40 graphics + 4 lines text
1 40x48 graphics with no lines text

If <screen number> is not specified, <screen number> =
0 is assumed.

GR clears the screen when it initializes low-resolution
graphics mode.

<color number> specifies the color to be used and is option-
al. If <color number> is not specified, color is set to black.
<color number> will fill the screen with the color specified
by <color number>. See COLOR for a list of color names
and their associated numbers.

GR Same as Applesoft GR statement
GR 1,15 Fill screen with white and set 40x48 mode

NOTE THAT THIS STATEMENT MAY BE USED
DIFFERENTLY IN MBASIC THAN IN APPLESOFT.

HLIN <x1 coordinate>, <x2 coordinate> AT <ycoordinate>
where x1 and x2 are integers in the range 0-39
and y is an integer in the range 0-47.

4-44

Purpose:

Remarks:

Example:

HOME
Syntax:
Purpose:

Remarks:

Example:

HTAB
Syntax:
Purpose:

Remarks:

In low resolution graphics mode, to draw a horizontal line
from point (x1,y) to point (x2,y).

<x1 coordinate> must be less than or equal to <x2 coor-
dinate>.

The color of the line is specified by the most recently ex-
ecuted COLOR statement.

If any of the coordinates are not in the required range as
specified above, an ILLEGAL FUNCTION CALL error re-
sults.

The HLIN statement normally draws a line composed of
dots from x1 to x2 at the vertical coordinate y. However, if
used when in TEXT mode, or when in mixed graphics and
text mode with y in the range 40-47, a line of characters is
displayed instead of the line of dots.

10 GR
20 COLOR=3
30 HLIN 14,20 AT 39

HOME

To clear the screen of all text and move the cursor to the
upper left corner of the screen.

When used with an external terminal, HOME sends a
"clear screen” character sequence to terminals that sup-
port this feature.

10 HOME
20 VTAB 12
30 PRINT "A CLEAN SCREEN"

HTAB <screen position number>

To move the cursor to the screen position that is <screen
position number> spaces from the left edge of the current
screen line.

The first (left-most) position on the line is 1, the last (right-
most) position on the line is 40.

HTAB uses absolute moves, not relative moves. For in-
stance, if the cursor was at position 10, and the command

4-45

IF.. THEN
Syntax:

Syntax:
Purpose:

Remarks:

HTAB 13 was executed, the cursor would be moved to posi-
tion 13, not position 23.

If a <screen position number> greater than 40 but less
than 255 is specified, it will be treated modulo 40. The com-
mand HTAB 60 would place the cursor at position 20 on the
current line. A <screen position number> greater than 255
results in an ILLEGAL FUNCTION CALL error.

..ELSE AND IF..GOTO

IF <expression> THEN <statement(s)> | <line number>

[ELSE <statement(s)> | <line number>}

IF <expression> GOTO <line number>
[ELSE <statement(s)> | <line number>]

To make a decision regarding program flow based on the
result returned by an expression.

If the result of <expression> is not zero, the THEN or
GOTO clause is executed. THEN may be followed by either
a line number for branching or one or more statements to
be executed. GOTO is always followed by a line number. If
the result of <expression> is zero, the THEN or GOTO
clause is ignored and the ELSE clause, if present, is execut-
ed. Execution continues with the next executable state-
ment. A comma may be used before THEN.

Nesting of IF Statements
IF..THEN..ELSE statements may be nested. Nesting is
limited only by the length of the line. For example
IF X>Y THEN PRINT "GREATER" ELSE IF Y>X
THEN PRINT "LESS THAN” ELSE PRINT "EQUAL"

is a legal statement. If the statement does not contain the
same number of ELSE and THEN clauses, each ELSE is
matched with the closest unmatched THEN. For example

IF A=B THEN iF B=C THEN PRINT "A=C"
ELSE PRINT "A<>C*

will not print "A<>C"” when A<>B.

If an IF..THEN statement is followed by a line number in
the direct mode, an "Undefined line” error results unless a
statement with the specified line number had previously
been entered in the indirect mode.

4-46

NOTE:

Example 1:

Example 2:

Example 3:

INPUT
Syntax:

Purpose:

Remarks:

When using IF to test equality for a value that is the result
of a floating point computation, remember that the internal
representation of the value may not be exact. Therefore,
the test should be against the range over which the accura-
cy of the value may vary. For example, to test a computed
variable A against the value 1.0, use:

IF ABS (A-1.0)<1.0E-6 THEN ...
This test returns true if the value of A is 1.0 with a relative
error of less than 1.0E-6.

200 IF | THEN GET#1,
This statement GETs record number I if I is not zero.

100 IF(1<20)*(1>10) THEN DB=1979-1:GOTO 300
110 PRINT "OUT OF RANGE”

In this example, a test determines if I is greater than 10
and less than 20. If I is in this range, DB is calculated and
execution branches to line 300. If I is not in this range,
execution continues with line 110.

210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

This statement causes printed output to go either to the
terminal or the line printer, depending on the value of a
variable (IOFLAG). If IOFLAG is zero, output goes to the
line printer, otherwise output goes to the terminal.

INPUT[;][<"prompt string”>;]<list of variables>
INPUT[;][<"prompt string”>,]<list of variables>

To allow input from the terminal during program execu-
tion.

When an INPUT statement is encountered, program exe-
cution pauses and the program waits for information to be
typed in at the terminal. If <”prompt string”> is included,
the string is printed. The required data items are then
entered at the terminal.

Note that unlike Applesoft, you have the option of enter-
ing either a semicolon or comma after the <"prompt
string”>. Like Applesoft, a semicolon causes a question
mark to be printed after the <”prompt string”>. A comma
after the <"prompt string” > causes the question mark to be
suppressed.

4-47

Example 1:

Example 2:

If INPUT is immediately followed by a semicolon, then the
carriage return typed by the user to input data does not
echo a carriage return/line feed sequence.

The data items that are entered are assigned to the varia-
ble(s) given in <variable list>. The number of data items
supplied must be the same as the number of variables in the
list. Data items are separated by commas.

The variable names in the list may be numeric or string
variable names (including subscripted variables). The type
of each data item that is input must agree with the type
specified by the variable name. (Strings input to an INPUT
statement need not be surrounded by quotation marks.)

Responding to INPUT with too many or too few items, or
with the wrong type of value (numeric instead of string,
etc.) causes the messsage "?Redo from start” to be printed.
No assignment of input values is made until an acceptable
response is given.

NOTE THAT THIS STATEMENT IS USED
DIFFERENTLY IN MBASIC THAN IN APPLESOFT.

10 INPUT X
20 PRINT X “SQUARED IS” X2
30 END
RUN
? 5 (The 5 was typed in by the user
in response to the question mark.)
5 SQUARED IS 25
Ok

LIST

10 Pi=3.14

20 INPUT “WHAT IS THE RADIUS";R

30 A=PP*Rt2

40 PRINT "THE AREA OF THE CIRCLE IS";A
50 PRINT

60 GOTO 20

Ok

RUN

WHAT IS THE RADIUS? 7.4 (User types 7.4)
THE AREA OF THE CIRCLE IS 171.946

WHAT IS THE RADIUS?
etc.

4-48

INPUT#
. Syntax: INPUT # <file number>,<variable list>

Purpose: To read data items from a sequential disk file and assign
them to program variables.

Remarks: <file number> is the number used when the file was
OPENed for input. <variable list> contains the variable
names that will be assigned to the items in the file. (The
variable type must match the type specified by the variable
name.) With INPUT #, no question mark is printed, as with
INPUT.

The data items in the file should appear just as they would
if data were being typed in response to an INPUT state-
ment. With numeric values, leading spaces, carriage re-
turns and line feeds are ignored. The first character encoun-
tered that is not a space, carriage return or line feed is
assumed to be the start of a number. The number termi-
nates on a space, carriage return, line feed or comma.

If BASIC-80 is scanning the sequential data file for a string
item, leading spaces, carriage returns and line feeds are
also ignored. The first character encountered that is not a
space, carriage return, or line feed is assumed to be the
start of a string item. If this first character is a quotation
mark ("), the string item will consist of all characters read
between the first quotation mark and the second. Thus, a
quoted string may not contain a quotation mark as a char-
acter. If the first character of the string is not a quotation
mark, the string is an unquoted string, and will terminate
on a comma, carriage or line feed (or after 255 characters
have been read). If end of file is reached when a numeric
or string item is being INPUT, the item is terminated.

After a GET statement INPUT# and LINE INPUT# may
be done to read characters from the random file buffer.

Example: See Appendix B.

INVERSE
Syntax: INVERSE

Purpose: To set the video output mode so that the screen displays
black characters on a white background.

Remarks: When using an external terminal, INVERSE sends a "Hi-

4-49

Example:

KILL
Syntax:
Purpose:

Remarks:

Example:

LET
Syntax:
Purpose:

Remarks:

Example:

lite” character sequence to those terminals that support
this feature. (See "Installation and Operations Manual.”)

INVERSE does not affect characters that are already on /

the screen when INVERSE is executed.

The NORMAL command restores the mode to the usual
white letters on black background. (See NORMALL.)

10 PRINT "THESE ARE WHITE CHARACTERS”
20 INVERSE
30 PRINT "THESE ARE BLACK CHARACTERS”

KILL <filename>
To delete a file from disk.

If a KILL statement is given for a file that is currently
OPEN, a "File already open” error occurs. KILL is used for
all types of disk files: program files, random data files and
sequential data files.

200 KiLL "DATAL.TXT”
See also Appendix B.

[LET] <variable>= <expression>
To assign the value of an expression to a variable.

Notice the word LET is optional, i.e., the equal sign is suffi-
cient when assigning an expression to a variable name.

110 LETD=12

120 LET E=1212

130 LETF=12+4

140 LET SUM=D+E+F

or
110 D=12
120 E=1212
130 F=12+4
140 SUM=D+E+F

4-50

LINE INPUT

Syntax:
Purpose:

Remarks:

Example:

LINE INPUT[;][<"prompt string”>;]<string variable>

To input an entire line (up to 254 characters) to a string
variable, without the use of delimiters.

The prompt string is a string literal that is printed at the
terminal before input is accepted. A question mark is not
printed unless it is part of the prompt string. All input from
the end of the prompt to the carriage return is assigned to
<string variable>.

If LINE INPUT is immediately followed by a semicolon,
then the carriage return typed by the user to end the input
line does not echo a carriage return/line feed sequence at
the terminal.

A LINE INPUT may be escaped by typing Control-C.
BASIC-80 will return to command level and type Ok. Typ-
ing CONT resumes execution at the LINE INPUT.

See Example, for LINE INPUT #.

LINE INPUT#

Syntax:
Purpose:

Remarks:

Example:

LINE INPUT # <file number>,<string variable>

To read an entire line (up to 254 characters), without deli-
miters, from a sequential disk data file to a string variable.

<file number> is the number under which the file was
OPENed. <string variable> is the variable name to which
the line will be assigned. LINE INPUT# reads all charac-
ters in the sequential file up to a carriage return. It then
skips over the carriage return/line feed sequence, and the
next LINE INPUT# reads all characters up to the next
carriage return. (If a line feed/carriage return sequence is
encountered, it is preserved.)

LINE INPUT# is especially useful if each line of a data file

has been broken into fields, or if a BASIC-80 program saved
in ASCII mode is being read as data by another program.

After a GET statement, INPUT# and LINE INPUT# may
be done to read characters from the random file buffer.

10 OPEN "0O",1,"LIST"
20 LINE INPUT "CUSTOMER INFORMATION? ":C$
30 PRINT #1, C$

4-51

LIST
Syntax 1:
Syntax 2:
or
Purpose:

Remarks:

Examples:

40 CLOSE 1

50 OPEN "1*,1,"LIST"

60 LINE INPUT #1, C$

70 PRINT C$

80 CLOSE 1

RUN

CUSTOMER INFORMATION? LINDA JONES 2344 MEMPHIS
LINDA JONES 2344 MEMPHIS

Ok

LIST [<line number>]

LIST [<line number>[-[<line number>]]]

LIST [<line number>[,[<line number>]]]

To list all or part of the program currently in memory at
the terminal.

BASIC-80 always returns to command level after a LISTis
executed.

Syntax 1: If <line number> is omitted, the program is list-
ed beginning at the lowest line number. (Listing is ter-
minated either by the end of the program or by typing
Control-C.) If <line number> is included, only the specified
line is listed.

Syntax 2: This format allows the following options:

1. If only the first number is specified, that line and all
higher-numbered lines are listed.

2. If only the second number is specified, all lines from
the beginning of the program through that line are
listed.

3. If both numbers are specified, the entire range is listed.

Syntax 1:

LIST Lists the program currently in memory.
LIST 500 Lists line 500.

Format 2:

LIST 150- Lists all lines from 150 to the end.

LIST -1000 Lists all lines from the lowest number

through 1000.
LST 150-1000 Lists lines 150 through 1000, inclusive.

4-52

LLIST
Syntax:
Purpose:

Remarks:

NOTE:

Example:

LOAD
Syntax:
Purpose:
Remarks:

Example:

LLIST [<line number>[-[<line number>]]]

To list all or part of the program currently in memory at
the line printer.

LLIST assumes a 132-character-wide printer.

BASIC-80 always returns to command level after an
LLIST is executed. The options for LLIST are the same as
for LIST, Syntax 2.

Use of LLIST requires that a printer card be plugged into
slot 1 of the Apple.

See the examples for LIST, Syntax 2.

LOAD <filename>[,R]
To load a file from disk into memory.

<filename> is the name that was used when the file was
SAVEd. (With CP/M, the default extension .BAS is sup-
plied.)

LOAD closes all open files and deletes all variables and
program lines currently residing in memory before it loads
the designated program. However, if the "R” option is used
with LOAD, the program is RUN after it is LOADed, and
all open data files are kept open. Thus, LOAD with the "R”
option may be used to chain several programs (or segments
of the same program). Information may be passed between
the programs using their disk data files.

LOAD "STRTRK",R

LPRINT AND LPRINT USING

Syntax:

Purpose:
Remarks:

NOTE:

LPRINT {<list of expressions>]
LPRINT USING <string exp>;<list of expressions>

To print data at the line printer.

Same as PRINT and PRINT USING, except output goes to
the line printer. See PRINT and PRINT USING.

LPRINT assumes a 132-character-wide printer.

Use of LPRINT requires that a printer card be plugged
into slot 1 of the Apple

4-53

LSET AND RSET

Syntax:
Purpose:

Remarks:

Examples:

NOTE:

MERGE
Syntax:
Purpose:

Remarks:

Example:

LSET <string variable> = <string expression>
RSET <string variable> = <string expression>

To move data from memory to a random file buffer (in
preparation for a PUT statement).

If <string expression> requires fewer bytes than were
FIELDed to <string variable>, LSET leftjustifies the
string in the field, and RSET right-justifies the string.
(Spaces are used to pad the extra positions.) If the string is
too long for the field, characters are dropped from the right.
Numeric values must be converted to strings before they
are LSET or RSET. See the MKI$, MKS$, MKD$ functions.

150 LSET A$=MKS$(AMT)
160 LSET D$=DESC($)
See also Appendix B.

LSET or RSET may also be used with a non-fielded string
variable to left-justify or right-justify a string in a given
field. For example, the program lines

110 A$=SPACE$(20)

120 RSET A$=N$

right-justify the string N§ in a 20-character field. This can
be very handy for formatting printed output.

MERGE <filename>

To merge a specified disk file into the program currently in
memory.

<filename> is the name used when the file was SAVEd.
(With CP/M, the default extension .BAS is supplied.) The
file must have been SAVEd in ASCII format. (If not, a "Bad
file mode” error occurs.)

If any lines in the disk file have the same line numbers as
lines in the program in memory, the lines from the file on
disk will replace the corresponding lines in memory.
(MERGEing may be thought of as "inserting” the program
lines on disk into the program in memory.)

BASIC-80 always returns to command level after execut-
ing a MERGE command.

MERGE "NUMBRS”

4-54

MID$
Syntax:

Purpose:

Remarks:

Example:

NAME
Syntax:
Purpose:

Remarks:

Example:

NEW
Syntax:
Purpose:

MID$(<string expl>,n[,m])= <string exp2>
where nandm are integer expressmns and <string exp1>
and <string exp2> are string expressions.

To replace a portion of one string with another string.

The characters in <string expl>, beginning at position n,
are replaced by the characters in <string exp2>. The op-
tional m refers to the number of characters from <string
exp2> that will be used in the replacement. If m is omitted,
all of <string exp2> is used. However, regardless of
whether m is omitted or included, the replacement of char-
acters never goes beyond the original length of <string
expl>.

10 A$="KANSAS CITY, MO~
20 MID$(AS,14)="KS"

30 PRINT A%

RUN

KANSAS CITY, KS

MID$ may also be used as a function that returns a sub-
string of a given string. See MID$ in Chapter 4.

NAME <old filename> AS <new filename>

To change the name of a disk file.

<old filename> must exist and <new filename> must not
exist; otherwise an error will result. After a NAME com-

mand, the file exists on the same disk, in the same area of
disk space, with the new name.

Ok

NAME ~ACCTS" AS "LEDGER”

Ok

In this example, the file that was formerly named ACCTS
will now be named LEDGER.

NEW

To delete the program currently in memory and clear all
variables.

4-55

Remarks:

NORMAL

Syntax:
Purpose:

Remarks:

Example:

NEW is entered at command level to clear memory before
entering a new program. BASIC-80 always returns to com-
mand level after a NEW is executed.

NORMAL

To restore the video output mode to the usual white char-
acters on black background.

NORMAL is used in conjunction with the INVERSE com-
mand. (See INVERSE.)

NORMAL does not affect characters already on the screen
in INVERSE mode when the NORMAL commangd is ex-
ecuted.

For external terminals that support the “Hi-lite” feature
for INVERSE, NORMAL sends a "Lo-lite” character se-
quence. (See “Installation and Operations Manual.”)

10 INVERSE

20 PRINT "THIS IS INVERSE MODE"
30 NORMAL

40 PRINT "THIS IS NOT"

ON ERROR GOTO

Syntax:
Purpose:

Remarks:

ON ERROR GOTO <line number>

To enable error trapping and specify the first line of the
error handling subroutine.

Once error trapping has been enabled all errors detected,
including direct mode errors (e.g., Syntax errors), will
cause a jump to the specified error handling subroutine. If
<line number> does not exist, an "Undefined line” error
results. To disable error trapping, execute an ON ERROR
GOTO 0. Subsequent errors will print an error message and
halt execution. An ON ERROR GOTO 0 statement that
appears in an error trapping subroutine causes BASIC-80
to stop and print the error message for the error that
caused the trap. It is recommended that all error trapping
subroutines execute an ON ERROR GOTO 0 if an error is
encountered for which there is no recovery action.

4-56

NOTE:

Example:

If an error occurs during execution of an error handling
subroutine, the BASIC error message is printed and execu-
tion terminates. Error trapping does not occur within the
error handling subroutine.

10 ON ERROR GOTO 1000

NOTE THAT THIS STATEMENT IS USED
DIFFERENTLY IN MBASIC THAN IN APPLESOFT

ON...GOSUB AND ON..GOTO

Syntax:

Purpose:

Remarks:

Example:

OPEN
Syntax:
Purpose:

Remarks:

ON <expression> GOTO <list of line numbers>
ON <expression> GOSUB <list of line numbers>

To branch to one of several specified line numbers, depend-
ing on the value returned when an expression is evaluated.

The value of <expression> determines which line number
in the list will be used for branching. For example, if the
value is three, the third line number in the list will be the
destination of the branch. (If the value is a non-integer, the
fractional portion is rounded.)

In the ON...GOSUB statement, each line number in the list
must be the first line number of a subroutine.

If the value of <expression> is zero or greater than the
number of items in the list (but less than or equal to 255),
BASIC continues with the next executable statement. If the
value of <expression> is negative or greater than 255, an
"Illegal function call” error occurs.

100 ON L-1 GOTO 150,300,320,390

OPEN <mode>,[#]<file number>,<filename>[,<reclen>]
To allow I/0 to a disk file.

A disk file must be OPENed before any disk I/0 operation
can be performed on that file. OPEN allocates a buffer for
170 to the file and determines the mode of access that will
be used with the buffer.

<mode> isastring expression whose first character is one
of the following:

0 specifies sequential output mode
I specifies sequential input mode
R specifies random input/output mode

4-57

<file number> is an integer expression whose value is be-
tween one and fifteen. The number is then associated with
the file for as long as it is OPEN and is used to refer other
disk 170 statements to the file.

<filename> is a string expression containing a name that
conforms to your operating system’s rules for disk file-
names.

<reclen> is an integer expression which, if included, sets
the record length for random files. The default record
length is 128 bytes. See also Appendix A

NOTE: A file can be OPENed for sequential input or random ac-
cess on more than one file number at a time. A file may be
OPENed for output, however, on only one file number at a
time.

Example: 10 OPEN *i*,2,"INVEN"
See also Appendix B.

OPTION BASE

Syntax: OPTION BASE n
where nislor 0

Purpose: To declare the minimum value for array subscripts.

Remarks: The default base is 0. If the statement

OPTION BASE 1

is executed, the lowest value an array subscript may have
is one.

PLOT

Syntax: PLOT <x coordinate>, <y coordinate>
where <x coordinate> is an integer in the range 0-39 and
<y coordinate> is an integer in the range 0-47.

Purpose: In low resolution graphics mode, to place a dot with <x
coordinate> and <y coordinate>.

Remarks: The point (0,0) is in the upper left corner of the screen.

The color of the dot placed by PLOT is determined by the
most recently executed COLOR or GR statement.

PLOT normally places a dot at (x,y). However, if PLOT is
used while in TEXT mode, or while in mixed graphics and
text mode with y in the range 40-47, a character is dis-
played instead of a dot.

4-58

Example:

POKE
Syntax:

Purpose:

Remarks:

Example:

POP
Syntax:
Purpose:

Remarks:

If either <x coordinate> or <y coordinate> is not in the
required range as specified above, an ILLEGAL FUNC-
TION CALL error results.

GR
COLOR=9
PLOT 24,37

POKE 1,J
where I and J are integer expressions

To write a byte into a memory location.

The integer expression I is the address of the memory loca-
tion to be POKEd. The integer expression J is the data to
be POKEJ. J must be in the range 0 to 255. I must be in the
range 0 to 65536. Refer to the 6502 to Z-80 Memory Map in
the Hardware Details section of this manual.

The complementary function to POKE is PEEK. The argu-
ment to PEEK is an address from which a byte is to be read.
See PEEK, Chapter 4.

POKE and PEEK are useful for efficient data storage, load-
ing assembly language subroutines, and passing arguments
and results to and from assembly language subroutines.

NOTE: PEEKs and POKEs used in Applesoft will not work
unless they are first converted to use Z-80 addresses. Refer
to the 6502 To Z-80 Memory Map in the Hardware Details
section of this manual.

10 POKE &H5A00,&HFF

POP

To return from a subroutine that was branched to by a
GOSUB without branching back to the statement following
the most recent GOSUB.

POP is used instead of RETURN to nullify a GOSUB. Like
RETURN, it nullifies the last GOSUB in effect, but it does
not return to the statement following the GOSUB. After a
POP, the next RETURN encountered will branch to one
statement beyond the second most recently executed

4-59

Example:

PRINT
Syntax:
Purpose:

Remarks:

GOSUB. Thus POP, in effect, takes one address off the top
of the “stack” of RETURN addresses.

See also GOSUB ... RETURN.

5 PRINT "HERE WE GO"
10 GOSUB 100

20 PRINT “XYZ"

30 END

100 GOSUB 200

110 PRINT "HELLO"
120 RETURN

200 POP

210 RETURN

RUN
HERE WE GO
XYZ

PRINT {<list of expressions>]
To output data at the terminal.

If <list of expressions> is omitted, a blank line is printed.
If <list of expressions> is included, the values of the ex-
pressions are printed at the terminal. The expressions in
the list may be numeric and/or string expressions. (Strings
must be enclosed in quotation marks.)

Print Positions

The position of each printed item is determined by the
punctuation used to separate the items in the list. BASIC-
80 divides the line into print zones of 14 spaces each. In the
list of expressions, a comma causes the next value to be
printed at the beginning of the next zone. A semicolon
causes the next value to be printed immediately after the
last value. Typing one or more spaces between expressions
has the same effect as typing a semicolon. If a comma or a
semicolon terminates the list of expressions, the next
PRINT statement begins printing on the same line, spacing
accordingly.

If the list of expressions terminates without a comma or a
semicolon, a carriage return is printed at the end of the
line. If the printed line is longer than the terminal width,
BASIC-80 goes to the next physical line and continues
printing.

4-60

Example 1:

Example 2:

Printed numbers are always followed by a space. Positive
numbers are preceded by a space. Negative numbers are
preceded by a minus sign. Single precision numbers that
can be represented with 6 or fewer digits in the unscaled
format no less accurately than they can be represented in
the scaled format, are output using the unscaled format.
For example, 101(—6) is output as .000001 and 10+(—7) is
output as 1E—7. Double precision numbers that can be
represented with 16 or fewer digits in the unscaled format
no less accurately than they can be represented in the
scaled format, are output using the unscaled format. For
example, 1D—16 is output as .0000000000000001 and
1D—17 is output as 1D --17.

A question mark may be used in place of the word PRINT
in a PRINT statement.

10 X=5
20 PRINT X+5, X—5, X*(—5), X5
30 END
RUN
10 0 —-25 3125
Ok

In this example, the commas in the PRINT statement
cause each value to be printed at the beginning of the next
print zone.

LIST
10 INPUT X
20 PRINT X "SQUARED IS” X+2 "AND";
30 PRINT X "CUBED IS* X13
40 PRINT
50 GOTO 10
Ok
RUN
?9
9 SQUARED IS 81 AND 9 CUBED IS 729

? 21
21 SQUARED IS 441 AND 21 CUBED IS 9261
?
In this example, the semicolon at the end of line 20 causes
both PRINT statements to be printed on the same line, and

4-61

Example 3:

line 40 causes a blank line to be printed before the next
prompt.

10 FORX=1TO5

20 J=J+5

30 K=K+10

40 JK;

50 NEXT X

Ok

RUN

5 10 10 20 15 30 20 40 25 50
Ok

In this example, the semicolons in the PRINT statement
cause each value to be printed immediately after the
preceding value. (Don’t forget, a number is always followed
by a space and positive numbers are preceded by a space.)
In line 40, a question mark is used instead of the word
PRINT.

PRINT USING

Syntax:
Purpose:
Remarks
and
Examples:

"\n spaces\”

PRINT USING <string exp>;<list of expressions>
To print strings or numbers using a specified format.

<list of expressions> is comprised of the string expressions
or numeric expressions that are to be printed, separated by
semicolons. <string exp> is a string literal (or variable)
comprised of special formatting characters. These format-
ting characters (see below) determine the field and the for-
mat of the printed strings or numbers.

String Fields

When PRINT USING is used to print strings, one of three
formatting characters may be used to format the string
field:

Specifies that only the first character in the given string is
to be printed.

Specifies that 2+n characters from the string are to be
printed. If the backslashes are typed with no spaces, two
characters will be printed; with one space, three characters
will be printed, and so on. If the string is longer than the
field, the extra characters are ignored. If the field is longer
than the string, the string will be left-justified in the field
and padded with spaces on the right.

4-62

n&n

Example:

10 A$="LOOK":B$="0UT"

30 PRINT USING "{";A$;B$

40 PRINT USING "\ \"A$;B$
50 PRINT USING "\ \";A$;B$;"!"
RUN

Lo

LOOKOUT

LOOK OUT !

Specifies a variable length string field. When the field is
specified with "&”, the string is output exactly as input.
Example:

10 A$="LOOK":B$="0OUT"
20 PRINT USING *I";AS;

30 PRINT USING "&";B$
RUN

LOuUT

Numeric Fields

When PRINT USING is used to print numbers, the follow-
ing special characters may be used to format the numeric
field:

A number sign is used to represent each digit position.
Digit positions are always filled. If the number to be printed
has fewer digits than positions specified, the number will be
right-justified (preceded by spaces) in the field.

A decimal point may be inserted at any position in the
field. If the format string specifies that a digit is to precede
the decimal point, the digit will always be printed (as 0 if
necessary). Numbers are rounded as necessary.
PRINT USING "# #.##",.78

0.78

PRINT USING "# # #.# #",987.654
987.65

PRINT USING "# #.## ;10.2,5.3,66.789,.234
10.20 530 66.79 0.23

In the last example, three spaces were inserted at the end
of the format string to separate the printed values on the
line.

4-63

¥

$$

*xg

A plussign at the beginning or end of the format string will
cause the sign of the number (plus or minus) to be printed
before or after the number.

A minus sign at the end of the format field will cause nega-
tive numbers to be printed with a trailing minus sign.

PRINT USING " ##.## ",—68.952.4,55.6,—.9
—68.95 +2.40 +5560 —0.90

PRINT USING "# #.##— ",—68.95,22.449,—7.01
68.95— 2245 701-

A double asterisk at the beginning of the format string
causes leading spaces in the numeric field to be filled with
asterisks. The ** also specifies positions for two more digits.

PRINT USING "**#.# ";12.39,-0.9,765.1
*124 *09 765.1

A double dollar sign causes a dollar sign to be printed to
the immediate left of the formatted number. The $$ spe-
cifies two more digit positions, one of which is the dollar
sign. The exponential format cannot be used with $$. Nega-
tive numbers cannot be used unless the minus sign trails to
the right.

PRINT USING "$$# # #.# #",456.78
$456.78

The **$ at the beginning of a format string combines the
effects of the above two symbols. Leading spaces will be
asterisk-filled and a dollar sign will be printed before the
number. **$ specifies three more digit positions, one of
which is the dollar sign.

PRINT USING "**$# #.# #",2.34
*44$2.34

A comma that is to the left of the decimal point in a format-
ting string causes a comma to be printed to the left of every
third digit to the left of the decimal point. A comma that is
at the end of the format string is printed as part of the
string. A comma specifies another digit position. The com-
ma has no effect if used with the exponential (t111) format.

PRINT USING "# # # #,.# #",1234.5
1,234.50

PRINT USING "# # # #.# #,7,1234.5
1234.50,

4-64

Tt

%

PRINT#
Syntax:
Purpose:
Remarks:

Four carats (or up-arrows) may be placed after the digit
position characters to specify exponential format. The four
carats allow space for E+xx to be printed. Any decimal
point position may be specified. The significant digits are
left-justified, and the exponent is adjusted. Unless a leading
+ or trailing + or — is specified, one digit position will be
used to the left of the decimal point to print a space or a
minus sign.

PRINT USING " # #.# #1111",234.56
2.35E+02

PRINT USING ".# # # #1111-",888888
.B889E+06

PRINT USING "+.# #t111";123
+.12E4+03

An underscore in the format string causes the next char-
acter to be output as a literal character.

PRINT USING "_!# #.##_17,12.34

112.34!
The llteral character itself may be an underscore by plac—
ing "__ __" in the format string.

If the number to be printed is larger than the spec1ﬁed
numeric field, a percent sign is printed in front of the num-
ber. If rounding causes the number to exceed the field, a
percent sign will be printed in front of the rounded number.

PRINT USING "# #.##";111.22
%111.22

PRINT USING ".# #";.999
%1.00

If the number of digits specified exceeds 24, an "Illegal
function call” error will result.

AND PRINT# USING

PRINT # <filenumber>,[USING<string exp>;]<list of exps>

To write data to a sequential disk file.

<filenumber> is the number used when the file was
OPENed for output. <string exp> is comprised of format-
ting characters as described for PRINT USING. The ex-
pressions in <list of expressions> are the numeric and/or

4-65

string expressions that will be written to the file.

PRINT# does not compress data on the disk. An image of
the data is written to the disk, just as it would be displayed
on the terminal with a PRINT statement. For this reason,
care should be taken to delimit the data on the disk, so that
it will be input correctly from the disk.

In the list of expressions, numeric expressions should be
delimited by semicolons. For example,

PRINT # 1,A;B;C;X;Y;Z

(If commas are used as delimiters, the extra blanks that
are inserted between print fields will also be written to
disk.)

String expressions must be separated by semicolons in the
list. To format the string expressions correctly on the disk,
use explicit delimiters in the list of expressions.

For example, let A$="CAMERA” and B$="93604-1". The
statement

PRINT # 1,A$;B$

would write CAMERA93604-1 to the disk. Because there are
no delimiters, this could not be input as two separate
strings. To correct the problem, insert explicit delimiters
into the PRINT # statement as follows:

PRINT# 1,A%;",”;B$

The image written to disk is

CAMERA,93604-1

which can be read back into two string variables.

If the strings themselves contain commas, semicolons, sig-
nificant leading blanks, carriage returns, or line feeds,
write them to disk surrounded by explicit quotation marks,
CHR$(34). For example, let A$="CAMERA, AUTOMATIC" and
B$=" 93604-1”. The statement

PRINT# 1,A$,B%

would write the following image to disk:
CAMERA, AUTOMATIC 93604-1

and the statement

INPUT# 1,A%$,B%

4-66

would input "CAMERA"” to A$ and "AUTOMATIC
93604-1" to B$. To separate these strings properly on the
disk, write double quotes to the disk image using CHR$(34).
The statement

PRINT # 1,CHR$(34);A%$;,CHR$(34);CHR$(34);B$;,CHR$(34)
writes the following image to disk:

"CAMERA, AUTOMATIC"* 93604-1*

and the statement

INPUT # 1 ,A$,B$

would input "CAMERA, AUTOMATIC” to A$ and "
93604-1" to BS.

The PRINT # statement may also be used with the USING
option to control the format of the disk file. For example:
PRINT# 1, USING"$$ # # #.# #,";J;K,L

PRINT#, PRINT# USING and WRITE# may also be
used to put characters in the random file buffer before a
PUT statement

For more examples using PRINT #, see Appendix B. See
also WRITE #.

PUT

Syntax: PUT [#] <file number>[,<record number>]

Purpose: To write a record from a random buffer to a random disk
file.

Remarks: <file number> is the number under which the file was
OPENed. If <record number> is omitted, the record will
have the next available record number (after the last PUT).
The largest possible record number is 32767.

Example: See Appendix B.

RANDOMIZE

Syntax: RANDOMIZE [<expression>]

Purpose: To reseed the random number generator.

Remarks: If <expression> is omitted, BASIC-80 suspends program

execution and asks for a value by printing
Random Number Seed (-32768 to 32767)?
before executing RANDOMIZE.
4-67

Example:

NOTE:

READ
Syntax:
Purpose:

Remarks:

If the random number generator is not reseeded, the RND

function returns the same sequence of random numbers -

each time the program is RUN. To change the sequence of
random numbers every time the program is RUN, place a
RANDOMIZE statement at the beginning of the program
and change the argument with each RUN.

10 RANDOMIZE

20 FORI=1TO 5

30 PRINT RND;

40 NEXT |

RUN

Random Number Seed (-32768- + 32767)7 3 (user types 3)

88598 .484668 .586328 .119426 .709225

Ok

RUN

Random Number Seed (-32768- +32767)? 4 (user types 4 for
new sequence)

803506 .162462 .929364 .292443 .322921

Ok

RUN

Random Number Seed (-32768- + 32767)? 3 (same sequence as
first RUN)

88598 .484668 .586328 .119426 .709225

Ok

With the BASIC Compiler, the prompt given by RAN-
DOMIZE is:

Random Number Seed (—32768 to 32767)?

READ <list of variables>

To read values from a DATA statement and assign them to
variables. (See DATA.)

A READ statement must always be used in conjunction
with a DATA statement. READ statements assign vari-
ables to DATA statement values on a one-to-one basis.
READ statement variables may be numeric or string, and
the values read must agree with the variable types spe-
cified. If they do not agree, a "Syntax error” will result.

A single READ statement may access one or more DATA

4-68

Example 1:

Example 2:

REM
Syntax:
Purpose:

statements (they will be accessed in order), or several
READ statements may access the same DATA statement.
If the number of variables in <list of variables> exceeds the
number of elements in the DATA statement(s), an OUT OF
DATA message is printed. If the number of variables spe-
cified is fewer than the number of elements in the DATA
statement(s), subsequent READ statements will begin read-
ing data at the first unread element. If there are no subse-
quent READ statements, the extra data is ignored.

To reread DATA statements from the start, use the RE-
STORE statement (see RESTORE).

80 FORiI=1TO 10

90 READ A(l)

100 NEXTI

110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

’fhis program segment READs the values from the DATA
statements into the array A. After execution, the value of
A(1) will be 3.08, and so on.

LisT

10 PRINT "CITY", “STATE", = ZIP"

20 READ C$,5%.Z

30 DATA "DENVER,”, COLORADO, 80211
40 PRINT C$,5%,Z

Ok

RUN

CITYy STATE ZiP
DENVER, COLORADO 80211
Ok

This program READs string and numeric data from the
DATA statement in line 30.

REM <remark>
To allow explanatory remarks to be inserted in a program.

4-69

Remarks:

Example:

RENUM
Syntax:
Purpose:
Remarks:

REM statements are not executed but are output exactly
as entered when the program is listed.

REM statements may be branched into (from a GOTO or
GOSUB statement), and execution will continue with the
first executable statement after the REM statement.

Remarks may be added to the end of a line by preceding
the remark with a single quotation mark instead of :REM.

120‘ REM CALCULATE AVERAGE VELOCITY
130 FORI=1TO 20
140 SUM=SUM + V()

or

120. FOR =1 TO 20 ‘CALCULATE AVERAGE VELOCITY
130 SUM=SUM+V()
140 NEXT !

RENUM [[<new number>][,[<old number>][,<increment>]]]
To renumber program lines.

<new number> is the first line number to be used in the
new sequence. The default is 10. <old number> is the line
in the current program where renumbering is to begin. The
default is the first line of the program. <increment> is the
increment to be used in the new sequence. The default is 10.

RENUM also changes all line number references following
GOTO, GOSUB, THEN, ON...GOTO, ON..GOSUB and ERL
statements to reflect the new line numbers. If a nonexistent
line number appears after one of these statements, the er-
ror message "Undefined line xxxxx in yyyyy” is printed.

4-70

~—~ NOTE:

Examples:

RESET
Syntax:
Purpose:

Use:

The incorrect line number reference (xxxxx) is not changed
by RENUM, but line number yyyyy may be changed.

RENUM cannot be used to change the order of program
lines (for example, RENUM 15,30 when the program has
three lines numbered 10, 20 and 30) or to create line num-
bers greater than 65529. An "Illegal function call” error
will result.

RENUM Renumbers the entire program. The
first new line number will be 10. Lines
will increment by 10.

RENUM 300,,50 Renumbers the entire program The
first new line number will be 300.
Lines will increment by 50.

RENUM 1000,900,20 Renumbers the lines from 900 up so
they start with line number 1000 and
increment by 20.

RESET

To reset the CP/M directory allocation information after
you have switched disks.

The procedure for changing disks is as follows: First, type
CLOSE to close any data files that may be open at the
time. Then, remove the old disk and insert the new disk.
Finally, after you have inserted the new disk, type RESET.
Failure to follow this procedure when changing disks may
cause loss of data, resulting in a “Disk Read Only” error.

RESTORE

Syntax:
Purpose:

Remarks:

Example:

RESTORE [<line number>]

To allow DATA statements to be reread from a specified
line.

After a RESTORE statement is executed, the next READ
statement accesses the first item in the first DATA state-
ment in the program. If <line number> is specified, the
next READ statement accesses the first item in the spe-
cified DATA statement.

10 READ AB,C
20 RESTORE

4-71

30 READ D,EF
40 DATA 57, 68, 79

RESUME

Syntax: RESUME
RESUME O
RESUME NEXT
RESUME <line number>

Purpose: To continue program execution after an error recovery
procedure has been performed.

Remarks: Any one of the four formats shown above may be used,
depending upon where execution is to resume:

RESUME Execution resumes at the

or statement which caused the
RESUME O error.

RESUME NEXT Execution resumes at the state-

ment immediately following the
one which caused the error.

RESUME <line number> Execution resumes at <line
number>.

A RESUME statement that is not in an error trap routine
causes a "RESUME without error” message to be printed.

Example: 10 ON ERROR GOTO 900

900 IF (ERR=230)AND(ERL=90) THEN PRINT "TRY
AGAIN":RESUME 80

NOTE THAT THIS STATEMENT IS USED
DIFFERENTLY IN MBASIC THAN IN APPLESOFT.

RUN
Syntax 1: RUN [<line number>]
Purpose: To execute the program currently in memory.

4-72

Remarks:

Example:
Syntax 2:
Purpose:

Remarks:

Example:

SAVE
Syntax:
Purpose:
Remarks:

Examples:

If <line number> is specified, execution begins on that
line. Otherwise, execution begins at the lowest line number.,
BASIC-80 always returns to command level after a RUN is
executed.

RUN
RUN <filename>{,R]
To load a file from disk into memory and run it.

<filename> is the name used when the file was SAVEd.
{(With CP/M the default extension .BAS is supplied.)

RUN closes all open files and deletes the current contents
of memory before loading the designated program. How-
ever, with the "R” option, all data files remain OPEN.

RUN "NEWFIL*,R
See also Appendix B.

SAVE <filename>{,A | ,P]
To save a program file on disk.

<filename> is a quoted string with the default extension
.BAS. If <filename> already exists, the file will be written
over.

Use the A option to save the file in ASCII format. Other-
wise, BASIC saves the file in a compressed binary format.
ASCII format takes more space on the disk, but some disk
access requires that files be in ASCII format. For instance,
the MERGE command requires an ASCII format file, and
some operating system commands such as LIST may re-
quire an ASCII format file.

In addition, programs written in 5.0 BASIC that you wish
to transfer to your Apple SoftCard system must be saved
in ASCII format.

Use the P option to protect the file by saving it in an encod-
ed binary format. When a protected file is later RUN (or
LOADed), any attempt to list or edit it will fail.

SAVE"COM2" A
SAVE"PROG”,P
See also Appendix B.

4-73

STOP
Syntax:
Purpose:

Remarks:

Example:

SWAP
Syntax:
Purpose:

Remarks:

Example:

STOP

To terminate program execution and return to command
level.

STOP statements may be used anywhere in a program to
terminate execution. When a STOP is encountered, the fol-
lowing message is printed:

Break in line nnnnn

Unlike the END statement, the STOP statement does not
close files.

BASIC-80 always returns to command level after a STOP
is executed. Execution is resumed by issuing a CONT com-
mand (see CONT).

10 INPUT AB,C
20 K=A12*5.3.L.=B3/.26
30 STOP
40 M=C*K+100:PRINT M
RUN
71,23
BREAK IN 30
Ok
PRINT L

30.7692
Ok
CONT

115.9
Ok

SWAP <variable>,<variable>
To exchange the values of two variables.

Any type variable may be SWAPped (integer, single preci-
sion, double precision, string), but the two variables must
be of the same type or a "Type mismatch” error results.

LIST

10 A$=" ONE ~:B$=" ALL " :C$="FOR"
20 PRINT A$ C$ BS

30 SWAP AS, BS

40 PRINT A$ C$ BS

4-74

SYSTEM
Syntax:
Purpose:

RUN

Ok

ONE FOR ALL
ALL FOR ONE
Ok

SYSTEM
To close all files and return to CP/M

Remarks: You cannot use Control-C to return to CP/M; it always
returns to BASIC.

Example; SYSTEM
A>

TEXT

Syntax: TEXT

Purpose: To reset the screen to normal full Apple text mode (24 lines
x 40 characters) from low-resolution graphics (in either
MBASIC or GBASIC) or high-resolution graphics (GBASIC
only).

Remarks: TEXT will clear the screen if it is used to return from
low-resolution graphics. It will not clear the screen from
high-resolution graphics.

If used while in Text mode, TEXT has the same effect as
VTAB 24.

Example: 10 HGR
20 COLOR=5
30 VLIN 24,30 AT 35
40 TEXT
50 PRINT “THIS IS A VERTICAL LINE*

TRACE/NOTRACE

Syntax: TRACE
NOTRACE

Purpose: To trace the execution of program statements.

Remarks: As an aid in debugging, the TRACE statement (executed in

either the direct or indirect mode) enables a trace flag that
prints each line number of the program as it is executed.
The numbers appear enclosed in square brackets. The trace
flag is disabled with the NOTRACE statement (or when a
NEW command is executed).

4-75

Example:

VLIN
Syntax:

Purpose:

Remarks:

Example:

TRACE

Ok

LisT

10 K=10

20 FORJ=1T02

30 L=K + 10

40 PRINT JKL

50 K=K+10

60 NEXT

70 END

Ok

RUN

(10][20){30){40] 1 10 20
[50](60)[30][40] 2 20 30
[50](60](70]

Ok

NOTRACE

Ok

VLIN <y1 coordinate>, <y2 coordinate> AT <x coordinate>
where <yl coordinate> and <y2 coordinate> are integers
in the range 0-47 and <x coordinate> is an integer in the
range 0-39

In low-resolution graphics mode, to draw a vertical line
from the point at (x,y1) to the point at (x,y2).

<yl coordinate> must be less than or equal to <y2 coor-
dinate>.

If any of the coordinates are not in the required range as
specified above, an ILLEGAL FUNCTION CALL error re-
sults.

The color of the line is determined by the most recent
COLOR statement.

The VLIN statement normally draws a line composed of
dots from y1 to y2 at the horizontal coordinate x. However,
if used when in Text mode, or when in mixed graphics and
text mode with y2 in the range 40-47, the part of the line
that falls in the text area will be displayed as a line of
characters.

10 GR
20 COLOR=3
30 VLIN 20,45 AT 12

4-76

/'\

VTAB
Syntax:
Purpose:

Remarks:

Example:

WAIT
Syntax:

Purpose:

Remarks:

CAUTION:

Example:

VTAB <screen line number>

To move the cursor to the line on the screen that corre-
sponds to the specified <screen line number>.

The first line (top line) on the screen is line 1; the last line
or bottom line on the screen is line 24.

VTAB uses absolute moves. For instance, if the cursor was
on line 10 of the screen, then the command VTAB 13 was
executed, the cursor would be moved to line 13, not line 23.

If a <screen line number> greater than 24 is specified, it
will be treated modulo 24. The command VTAB 26 would
place the cursor on screen line 2. If a <screen line number>
greater than 255 is specified, it results in an ILLEGAL
FUNCTION CALL error.

VTAB can move the cursor either up or down.

When used with an external terminal, VTAB sends a *cur-
sor address” character sequence to terminals that address
this feature.

10 VTAB 12: PRINT "MIDDLE OF SCREEN”

WAIT <address>, i[,J]
where I and J are integer expressions

To suspend program execution while monitoring the
status of an address.

The WAIT statement causes execution to be suspended un-
til a specified address develops a specified bit pattern. The
data read at the port is exclusive OR’ed with the integer
expression J, and then AND’ed with I. If the result is zero,
BASIC-80 loops back and reads the data at the address
again. If the result is nonzero, execution continues with the
next statement. If J is omitted, it is assumed to be zero

It is possible to enter an infinite loop with the WAIT state-
ment, in which case it will be necessary to manually restart
the machine.

100 WAIT &HE000,128
200 PRINT "KEYPRESS!":GOTO 100

4-77

WHILE..WEND

Syntax:

Purpose:

Remarks:

Example:

WIDTH
Syntax 1
Purpose 1:

Syntax 2:
Purpose 2:

WHILE <expression>
[<loop statements>]

WEND
To execute a series of statements in a loop as long as a
given condition is true.

If <expression> is not zero (i.e., true), <loop statements>
are executed until the WEND statement is encountered.
BASIC then returns to the WHILE statement and checks
<expression>. If it is still true, the process is repeated. If
it is not true, execution resumes with the statement follow-
ing the WEND statement.

WHILE/WEND loops may be nested to any level. Each
WEND will match the most recent WHILE. An unmatched
WHILE statement causes a "WHILE without WEND" er-
ror, and an unmatched WEND statement causes a *"WEND
without WHILE" error.

90 ‘BUBBLE SORT ARRAY A$
100 FLIPS=1 ‘FORCE ONE PASS THRU LOOP
110 WHILE FLIPS

115 FLIPS=0
120 FORI=1TO J-1
130 IF A$()>A$(+ 1) THEN
SWAP A$(l),A$(1+1):FLIPS=1
140 NEXT |
150 WEND

WIDTH [LPRINT] <linewidth>>

To set the printed line width in number of characters for
the terminal or line printer.

WIDTH [<linewidth>},[< screen height>>]

To set the printed line width in number of characters and/
or screen height in number of lines for the terminal.

4-78

Remarks:

WRITE
Syntax:
Purpose:
Remarks:

Example:

WRITE#
Syntax:

<line width> must be an integer in the range 15-255.
<screen height> must be an integer in the range 1-24. If
you are using 40-column Apple video, the default line
length is 40, and the default screen height is 24. If you are
using an external terminal with 80 columns, the default
line width is 80 and the default screen height is 24.

In Syntax 1, if the LPRINT option is omitted, the line
width is set at the terminal. If LPRINT is included, the line
width is set at the line printer.

In Syntax 2, one or both of the parameters may be spe-
cified, but at least one must be specified.

If <line width> is 255, the line width is "infinite,” that is,
BASIC never inserts a carriage return. However, the posi-
tion of the cursor or the print head, as given by the POS or
LPOs function, returns to zero after position 255. Ok

WRITE [<listofexpressions>]
To output data at the terminal.

If <list of expressions> is omitted, a blank line is output.
If <list of expressions> is included, the values of te ex-
pressions are output at the terminal. The expressionsin the
list may be numeric and/or string expressions, and they
must be separated by commas.

When the printed items are output, each item will be sepa-
rated from the last by a comma. Printed strings will be
delimited by quotation marks. After the last item in the list
is printed, BASIC inserts a carriage return/line feed.

WRITE outputs numeric values using the same format as
the PRINT statement. (See PRINT.)
10 A=80:B=90:C$=THAT'S ALL
20 WRITE AB,C$
RUN
80, 90,"THAT'S ALL"
Ok

WRITE # <file number>,<list of expressions>

4-79

Purpose:
Remarks:

Example:

To write data to a sequential file.

<file number> is the number under which the file was
OPENed in 0" mode. The expressions in the list are string
or numeric expressions, and they must be separated by
commas.

The difference between WRITE# and PRINT# is that
WRITE # inserts commas between the items as they are
written to disk and delimits strings with quotation marks.
Therefore, it is not necessary for the user to put explicit
delimiters in the list. A carriage return/line feed sequence
is inserted after the last item in the list is written to disk.

WRITE #, PRINT#, and PRINT# USING may also be
used to put characters in the random file buffer before a
PUT statement. In the case of WRITE#, BASIC-80 pads
the buffer with spaces up to the carriage return. Any at-
tempt to read or write past the end of the buffer causes a
"Field overflow"” error.

Let A$="CAMERA" and B$="93604-1". The statement:
WRITE# 1,A$,B$

writes the following image to disk:
"CAMERA","93604-1"

A subsequent INPUT# statement, such as:

INPUT # 1,A%,B%
would input "CAMERA" to A$ and "93604-1" to B$.

4-80

CHAPTER 4
BASIC-80 FUNCTIONS

The intrinsic functions provided by BASIC-80 are presented in this
chapter. The functions may be called from any program without further
definition. Arguments to functions are always enclosed in parentheses.
In the formats given for the functions in this chapter, the arguments
have been abbreviated as follows:

XandY Represent any numeric expressions

Iandd Represent integer expressions

XandY Represent plotting coordinates for graphics
functions.

X$ and Y§ Represent string expressions
If afloating point value is supplied where an integer is required, BASIC-
80 will round the fractional portion and use the resulting integer.
NOTE

With the BASIC-80 interpreter, only integer and sin-
gle precision results are returned by functions. Double
precision functions are supported only by the BASIC

compiler.
ABS
Syntax: ABS(X)
Action: Returns the absolute value of the expression X.
Example: PRINT ABS(7*(—5))

35
Ok

ASC
Syntax: ASC(X$)
Action: Returns a numerical value that is the ASCII code of the

first character of the string X$. {(See Appendix L for ASCII
codes.) If X$ is null, an "Illegal function call” error is re-
turned.

Example: 10 X$ = "TEST"
20 PRINT ASC(X$)

4-81

RUN

84

Ok

See the CHR$ function for ASCII-to-string conversion.
ATN
Syntax: ATN(X)
Action: Returns the arctangent of X in radians. Result is in the

range —pi/2 to pi/2. The expression X may be any numeric
type, but the evaluation of ATN is always performed in
single precision.

Example: 10 INPUT X
20 PRINT ATN(X)

RUN
?3
1.24905
Ok
BUTTON
Syntax: BUTTON(!)
Action: Returns the current value of the push button on the game

controller, specified by 1.
Remarks: [is in the range 0-3.

The returned value is either 0, if the button is not cur-
rently depressed, or -1 if the button is currently depressed.

Example: 10 IF BUTTON (0) THEN PRINT "BOOM”

CDBL
Syntax: CDBL(X)
Action: Converts X to a double precision number.

Example: 10 A = 454.67
20 PRINT A;CDBL(A)
RUN
454.67 454.6700134277344
Ok

CHRS$
Syntax: CHR$())

4-82

Action:

Example:

CINT
Syntax:
Action:

Example:

COS
Syntax:
Action:

Example:

CSNG
Syntax:
Action:

Example:

Returns a string whose one element has ASCII code I.
x(ASCII codes are listed in Appendix G.) CHR$ is com-
monly used to send a special character to the terminal. For
instance, the BEL character could be sent (CHR$(7)) as a
preface to an error message, or a form feed could be sent
{(CHR$(12)) to clear a CRT screen and return the cursor to
the home position.

PRINT CHR$(66)
B

Ok
See the ASC function for ASCII-to-numeric conversion.

CINT(X)

Converts X to an integer by rounding the fractional por-
tion. If X is not in the range —32768 to 32767, an "Over-
flow” error occurs.

PRINT CINT(45.67)

46
Ok

See the CDBL and CSNG functions for converting num-
bers to the double precision and single precision data type.
See also the FIX and INT functions, both of which return

integers.

COS(X)
Returns the cosine of X in radians. The calculation of
COS(X) is performed in single precision.

10 X = 2*C0OS(.4)
20 PRINT X
RUN
1.84212
Ok

CSNG(X)
Converts X to a single precision number.

10 A# = 975.3421#
20 PRINT A#; CSNG(A#)

4-83

RUN
975.3421 975.342
Ok

See the CINT and CDBL functions for converting numbers
to the integer and double precision data types.

CV], CVS, CVD

Syntax:

Action:

Example:

EOF
Syntax:
Action:

Example:

CVI(<2-byte string>)

CVS(<4-byte string>)

CVD(<8-byte string>)

Convert string values to numeric values. Numeric values
that are read in from a random disk file must be converted
from strings back into numbers. CVI converts a 2-byte
string to an integer. CVS converts a 4-byte string to a single
precision number. CVD converts an 8byte string to a dou-
ble precision number.

70 FIELD #1,4 AS NS, 12 AS BS, ..
80 GET #1
90 Y=CVS(N$)

see also MKI$, MKS$, MKDS$, in this Chapter and Appen-
dix B.

EOF(<file number>)

Returns —1 (true) if the end of a sequential file has been
reached. Use EOF to test for end-of-file while INPUTting,
to avoid "Input past end” errors.

The EOF function may also be used with random files. If
a GET is done past the end of the file, EOF will return -1.
This may be used to find the size of a file using a binary
search or other algorithm.

10 OPEN "I",1,"DATA"

20 C=0

30 IF EOF(1) THEN 100

40 INPUT #1,M(C)

4-84

EXP
Syntax:
Action:

Example:

FIX
Syntax:
Action:

Examples:

FRE
Syntax:

Action:

50 C=C+1:GOTO 30

EXP(X)

Returns e to the power of X. X must be < =87.3365. If EXP
overflows, the "Overflow” error message is displayed, ma-
chine infinity with the appropriate sign is supplied as the
result, and execution continues.

10X=5
20 PRINT EXP (X—1)
RUN
54.5982
Ok
FIX(X)

Returns the truncated integer part of X. FIX(X) is equiva-
lent to SGN(X)*INT(ABS(X)). The major difference be-
tween FIX and INT is that FIX does not return the next
lower number for negative X.

PRINT FIX(58.75)
58
Ok

PRINT FIX(—58.75)
—58
Ok

FRE(O)

FRE(X$)

Arguments to FRE are dummy arguments. FRE returns
the number of bytes in memory not being used by BASIC-
80.

FRE("") forces a garbage collection before returning the
number of free bytes. BE PATIENT: garbage collection
may take 1 to 1-1/2 minutes. BASIC will not initiate gar-
bage collection until all free memory has been used up.

4-85

Example:

HEX$
Syntax:
Action:

Example:

INKEY$
Syntax:
Action:

Example:

INPUTS
Syntax:
Action:

Therefore, using FRE("") periodically will result in shorter
delays for each garbage collection.

PRINT FRE(O)
14542
Ok

HEX$(X)

Returns a string which represents the hexadecimal value
of the decimal argument. X is rounded to an integer before
HEX$(X) is evaluated.

10 INPUT X
20 A$ = HEX$(X)
30 PRINT X "DECIMAL IS~ A$ © HEXADECIMAL"
RUN
? 32
32 DECIMAL IS 20 HEXADECIMAL
Ok

See the OCTS$ function for octal conversion.

INKEY$

Returns either a one character string containing a char-
acter read from the terminal or a null string if no character
is pending at the terminal. No characters will be echoed
and all characters are passed through to the program ex-
cept for Control-C which terminates the program.

1000 ‘Timed Input Subroutine

1010 RESPONSE$=""

1020 FOR 1% =1 TO TIMELIMIT%

1030 A$=INKEY$: IF LEN(A$)=0 THEN 1060
1040 IF ASC(A$)=13 THEN TIMEOUT% =0 : RETURN
1050 RESPONSE$=RESPONSE$+A$

1060 NEXT 1%

1070 TIMEOUT% =1 : RETURN

INPUTS(XLI#1Y]D)

Returns a string of X characters, read from the terminal or
from file number Y. If the terminal is used for input, no
characters will be echoed and all control characters are

4-86

~

P

Example 1:

Example 2:

INSTR
Syntax:
Action:

Example:

INT
Syntax:
Action:
Examples:

passed through except Control-C, which is used to interrupt
the execution of the INPUT$ function.

5 ‘LIST THE CONTENTS OF A SEQUENTIAL FILE IN HEXADECIMAL
10 OPEN"I",1,"DATA"

20 IF EOF(1) THEN 50

30 PRINT HEX$(ASC(NPUTS(1,# 1)),

40 GOTO 20

50 PRINT

60 END

100 PRINT "TYPE P TO PROCEED OR S TO STOP”
110 X$=INPUT$(1)

120 IF X$="P" THEN 500

130 IF X$="S" THEN 700 ELSE 100

INSTR([1,]X$,Y$)

Searches for the first occurrence of string Y in X$ and
returns the position at which the match is found. Optional
offset I sets the position for starting the search. I must be
in the range 1 to 255. If I >LEN(X$) or if X$ is null or ifY$
cannot be found, INSTR returns 0. If Y$ is null, INSTR
returns I or 1. X$ and Y$ may be string variables, string
expressions or string literals.

10 X$ = "ABCDEB”

20 Y$ = "B”

30 PRINT INSTR(X$,Y$);INSTR(4,X$,Y$)
RUN

2 6

Ok

INT(X)
Returns the largest integer <=X.

PRINT INT(99.89)
99
Ok

4-87

LEFTS$
Syntax:
Action:

Example:

LEN
Syntax:
Action:

Example:

LOC
Syntax:
Action:

Example:

LOF
Syntax:

PRINT INT(—12.11)
-13
Ok

See the FIX and CINT functions which also return integer
values.

LEFT$(X$.D

Returns a string comprised of the leftmost I characters of
X$. I must be in the range 0 to 255. If I is greater than
LEN(X$), the entire string (X$) will be. returned. IfI=0, the
null string (length zero) is returned.

10 A$ = "BASIC-80"
20 B$ = LEFT$(AS,5)
30 PRINT 8%

BASIC

Ok

Also see the MID$ and RIGHT$ functions.

LEN(X$)
Returns the number of characters in X$. Non-printing
characters and blanks are counted.

10 X$ = "PORTLAND, OREGON"
20 PRINT LEN(X$)

16
Ok

LOC(<file number>)

With random disk files, LOC returns the next record num-
ber to be used if a GET or PUT (without a record number)
is executed. With sequential files, LOC returns the number
of sectors (128 byte blocks) read from or written to the file
since it was OPENed.

200 IF LOC(1)>50 THEN STOP

LOF(< file number>)

4-88

Action:

Example:

LOG
Syntax:
Action:

Example:

LPOS
Syntax:
Action:

Example:

MIDS$
Syntax:
Action:

Example:

Returns the number of records present in the last extent
read or written. If the file does not exceed one extent (128
records), then LOF returns the true length of the file.

110 IF NUM%>LOF(1) THEN PRINT "INVALID ENTRY"

LOG(X)

Returns the natural logarithm of X. X must be greater
than zero.

PRINT LOG(45/7)
1.86075
Ok

LPOS(X)

Returns the current position of the line printer print head
within the line printer buffer. Does not necessarily give the
physical position of the print head. X is a dummy argu-
ment.

100 IF LPOS(X)>60 THEN LPRINT CHR$(13)

MID$(X$,I[.J])

Returns a string of length J characters from X beginning
with the Ith character. I and J must be in the range 0 to 255.
If J is omitted or if there are fewer than J characters to the
right of the Ith character, all rightmost characters begin-
ning with the Ith character are returned. If I>LEN(XS$),
MIDS$ returns a null string.

LIST

10 A$="GOOD *

20 B$="MORNING EVENING AFTERNOON"
30 PRINT A$;MID$(B$,9,7)

Ok

RUN

GOOD EVENING

Ok

Also see the LEFT$ and RIGHT$ functions.

4-89

MKI$, MKS$, MKD$

Syntax:

Action:

Example:

OCT$
Syntax:
Action:

Example:

PDL
Syntax:
Action:

Remarks:

MKI$(<integer expression>)
MKS$(<single precision expression>)
MKD$(<double precision expression>)

Convert numeric values to string values. Any numeric val-
ue that is placed in a random file buffer with an LSET or
RSET statement must be converted to a string. MKI$ con-
verts an integer to a 2-byte string. MKS$ converts a single
precision number to a 4-byte string. MKDS$ converts a dou-
ble precision number to an 8-byte string.

90 AMT=(K+T)

100 FIELD #1, 8 AS D$, 20 AS N$
110 LSET D$ = MKS$(AMT)

120 LSET N§ = A$

130 PUT #1

See also CVI, CVS, CVD, in this Chapter and Appendix
B.

OCT$(X)

Returns a string which represents the octal value of the
decimal argument. X is rounded to an integer before
OCT$(X) is evaluated.

PRINT OCT$(24)
30
Ok

See the HEXS$ function for hexadecimal conversion.

POL(I)

Returns the current value, in the range 0-255, of the game
control specified by I.

I is an integer in the range 0-3.

The value of two game controls should not be read in con-
secutive instructions, as the reading from the first may
affect the second. A delay such as 10 FOR X=1 TO 10:

4-90

Example:

PEEK
Syntax:
Action:

NOTE:

Example:

POS
Syntax:
Action:

Example:

RIGHTS$

Syntax:
Action:

NEXT X between the two provides sufficient separation for
a correct reading.

10 PRINT PDL(0): GOTO 10
RUN

0

23

79

100

190

255

c

BREAK IN
OK

PEEK(I)

Returns the byte (decimal integer in the range 0 to 255)
read from memory location I. I must be in the range 0 to
65536. PEEK is the complementary function to the POKE
statement, See POKE, Chapter 3

PEEKs and POKEs used in Applesoft and Integer BASIC
will not work with BASIC-80 unless they are first converted
to use Z-80 addresses. Refer to the 6502 To Z-80 memory
map in the "Software and Hardware Details” section of this
manual.

A=PEEK(&H5A00)

POS()

Returns the current cursor position. The leftmost position
is 1. X is a dummy argument.

IF POS(X)>60 THEN PRINT CHR$(13)
Also see the LPOS function.

RIGHT$(X$,)

Returns the rightmost I characters of string X$. If I=
LEN(XS$), returns X$. If I=0, the null string (length zero)
is returned.

4-91

Example:

RND
Syntax:
Action:

Example:

SCRN
Syntax:

Action:

Example:

SGN
Syntax:
Action:

10 A$="DISK BASIC-80"
20 PRINT RIGHT$(A$,8)
RUN

BASIC-80

Ok

Also see the MID$ and LEFT$ functions.

RND[(X)]

Returns a random number between 0 and 1. The same
sequence of random numbers is generated each time the
program is RUN unless the random number generator is
reseeded. (See RANDOMIZE.) However, X<0 always re-
starts the same sequence for any given X.

X>0 or X omitted generates the next random number in
the sequence. X =0 repeats the last number generated.

10 FORI=1TO 5

20 PRINT INT(RND*100);
30 NEXT

RUN

24 30 31 51 5
Ok

SCRN(X,Y)
where X is an integer in the range 0-39 and Y is an integer
in the range 0-47.

Returns the color of the point at (X,Y).

10 GR

20 COLOR=13

30 PLOT 10,15
PRINT SCRN(10,15)
RUN

13

SGN(X)

If X>0, SGN(X) returns 1. If X=0, SGN(X) returns 0. If
X<0, SGN(X) returns —1.

4-92

Example:

SIN
Syntax:
Action:

Example:

SPACES$
Syntax:
Action:

Example:

SPC
Syntax:
Action:

Example:

ON SGN(X)+2 GOTO 100,200,300 branches to 100 if
X is negative, 200 if X is 0 and 300 if X is

positive.

SIN(X)

Returns the sine of X in radians. SIN(X) is calculated in
single precision. COS(X)=SIN(X+3.14159/2).

PRINT SIN(1.5)
.997495
Ok

SPACES$(X)

Returns a string of spaces of length X. The expression X is
rounded to an integer and must be in the range 0 to 255.

10 FORI=1T05
20 X$ = SPACES(D)
30 PRINT X$;i
40 NEXT |
RUN
1
2
3
4
5
Ok

Also see the SPC function.

SPC(l)

Prints Iblanks on the terminal. SPC may only be used with
PRINT and LPRINT statements. I must be in the range 0
to 255.

PRINT "OVER” SPC(15) "THERE”
OVER THERE

Ok
Also see the SPACES function.

4-93

SQR
Syntax: SQR(X)
Action: Returns the square root of X. X must be >=0.

Example: 10 FORX = 0 TO 25 STEP 5
20 PRINT X, SQR(X)

30 NEXT
RUN
10 3.16228
15 3.87298
20 447214
25 5
Ok
STR$
Syntax: STR$(X)
Action: Returns a string representation of the value of X.

Example: 5 REM ARITHMETIC FOR KIDS
10 INPUT "TYPE A NUMBER";N
20 ON LEN(STR$(N)) GOSuB 30,100,200,300,400,500

Alsc; see the VAL function.

STRINGS$

Syntax: STRING$(,J)
STRING$(1,X$)

Action: Returns a string of length I whose characters all have AS-
CII code J or the first character of X$.

Example: 10 X$ = STRING$(10,45)
20 PRINT X$ "MONTHLY REPORT” X$

RUN
MONTHLY REPORT:
Ok
TAB
Syntax: TAB())
Action: Spaces to position I on the terminal. If the current print
position is already beyond space I, TAB goes to that posi-

N

4-94

Example:

TAN
Syntax:
Action:

Example:

USR
Syntax :
Action:

Example:

VAL
Syntax:
Action:

tion on the next line. Space 1 is the leftmost position, and
the rightmost position is the width minus one. I must be in
the range 1 to 255. TAB may only be used in PRINT and
LPRINT statements.

10 PRINT "NAME” TAB(25) "AMOUNT” : PRINT
20 READ A$%$,B$

30 PRINT A% TAB(25) B$

40 DATA "G. T. JONES*,"$25.00"

RUN

NAME AMOUNT
G. T. JONES $25.00
Ok

TAN(X)

Returns the tangent of X in radians. TAN(X) is calculated
in single precision. If TAN overflows, the "Overflow” error
message is displayed, machine infinity with the appropri-
ate sign is supplied as the result, and execution continues.

10 Y = Q*TAN(X)/2

USR[<digit>1(X)

Calls the user’s assembly language subroutine with the
argument X. <digit> is in the range 0 to 9 and corresponds
to the digit supplied with the DEF USR statement for that
routine. If <digit> is omitted, USRO is assumed. See Appen-
dix C.

40 B = T*SIN(Y)

50 C = USR(B/2)

60 D = USR(B/3)

VAL(XS$)

Returns the numerical value of string X$. If the first char-
acter of X$isnot +, —, &, or a digit, VAL(X$)=0. VAL (X$)

4-95

Example:

VARPTR

Syntax 1:
Syntax 2:
Action:

NOTE:

Example:

VPOS
Syntax:
Action:

will, however, strip blanks, tabs, and linefeeds from the
argument string.

10 READ NAME$,CITY$,STATES,ZIP$

20 IF VAL(ZIP$)<90000 OR VAL(ZIP$)>96699 THEN
PRINT NAME$ TAB(25) "OUT OF STATE"

30 IF VAL(ZIP$)>=90801 AND VAL(ZIP$)<=90815 THEN
PRINT NAME$ TAB(25) "LONG BEACH”

Seé the STR$ function for numeric to string conversion.

VARPTR(<variable name>)
VARPTR(# < file number>)

Syntax 1: Returns the address of the first byte of data iden-
tified with <variable name>. A value must be assigned to
<variable name> prior to execution of VARPTR. Other-
wise an “Illegal function call” error results. Any type varia-
ble name may be used (numeric, string, array), and the
address returned will be an integer in the range 32767 to
—32768. If a negative address is returned, add it to 65536
to obtain the actual address.

VARPTR is usually used to obtain the address of a varia-
ble or array so it may be passed to an assembly language
subroutine. A function call of the form VARPTR(A(0)) is
usually specified when passing an array, so that the lowest-
addressed element of the array is returned.

All simple variables should be assigned before calling
VARPTR for an array, because the addresses of the arrays
change whenever a new simple variable is assigned.
Syntax 2: Returns the starting address of the disk I/0
xbuffer assigned to <file number>.

For random files, VARPTR (# <file number>) returns the
address of the FIELD buffer

100 X=USR(VARPTR(Y))

VPOS(I)

Returns the current vertical position of the cursor. The
topmost position is 1. X is a dummy argument.

4-96

Example: 10 PRINT “NOW YOU SEE IT.
20 FOR T=0TO 1000: NEXT T

30 VTAB VPOS(0) -1
40 PRINT "NOW YOU DON'T ~

4-97

CHAPTER 5

HIGH-RESOLUTION GRAPHICS:
GBASIC

INITIALIZATION

GBASIC is the CP/M version of Microsoft BASIC that includes high-
resolution graphics capability in addition to all of the features of MBAS-
IC. It is supplied only on the 16-sector disk. The name of the file is
GBASIC.COM.

To load and run GBASIC, simply bring up the CP/M operating system
in the usual manner (See "Installation and Operations Manual).” After
the A> prompt appears, type:

GBASIC

and press the RETURN key. In a few seconds, a copyright notice will
appear, indicating GBASIC is ready for your command.

This initialization process sets at 3 the number of files that may be open
at any one time during the execution of a BASIC program (see /F option
below), allows all memory up to the start of FDOS in CP/M to be used
(see /M option below) and sets maximum record size at 128.

The command line format below allows you to set these options and/or
automatically RUN any program after initialization:

GBASIC <filename> [/F:<number of files>] [/M:<highest
memory location>][/S:<maximum record size>] Press RETURN

The <filename> option allows you to RUN a program automatically
after initialization is complete. A default extension of .BAS is used if
none is supplied and the filename is less than nine characters long. This
allows BASIC programs to be executed in batch mode using the SUB-
MIT facility of CP/M. Such programs should include the SYSTEM state-
ment (See Chapter 3) to return to CP/M when they have finished, allow-
ing the next program in the batch stream to execute.

The /F:<number of files> option sets the number of disk data files that
may be open at any one time during the execution of a BASIC program.
Each file data block allocated in this fashion requires 166 bytes plus 128
(or number specified by /S:) bytes of memory. If the /F option is omitted,

4-98

the number of files defaults to 3. <number of files> may be either deci-
mal, octal (preceded by &O) or hexadecimal (preceded by &H).

The /M:<highest memory location> option sets the highest memory
location that will be used by MBASIC. In some cases, it is desirable to
set the amount of memory well below the CP/M’s FDOS to reserve space
for assembly language subroutines. In all cases, highest memory loca-
tion should be below the start of FDOS (whose address is contained in
locations 6 and 7). If the /M option is omitted, all memory up to the start
of FDOS is used. The <highest memory location> number may be deci-
mal, octal (preceded by &O) or hexadecimal (preceded by &H).

The /S:<maximum record size> option sets the maximum size to be
allowed by random files. Any integer may be specified, including inte-
gers larger than 128. If the /S option is omitted, maximum record size
is set at 128.

When BASIC-80 is initialized, the system will reply:

BASIC-80 Version 5.xx

(Apple CP /M Version)
Copyright 1980 (c) by Microsoft
Created: dd-Mmm-yy

XXXX Bytes free
Ok
Here are a few examples of the different initialization options:
A>GBASIC PAYROLL.BAS Use all memory and 3 files; load
and execute PAYROLL.BAS
A>GBASIC INVENT/F:6 Use all memory and 6 files; load
and execute INVENT.BAS
A>GBASIC /M:32768 Use first 32K of memory and 3
files

A>GBASIC DATACK/F:2/M:&H9000 Use first 36K of memory, 2 files
and execute DATACK.BAS

All other information regarding GBASIC, with the exception of high-
resolution graphics commands, is the same as that for MBASIC and can
be found in Chapters 1-4. High-resolution graphics are the added attrac-
tion of GBASIC and are described below:

HGR High-Resolution Statements and Commands
< color number> is an integer in the range 0-12.

Syntax: HGR <screen number>, <color number>
where <screen number> is an integer in the range 0-3 and
<color number> is an integer in the range 0-7.

Purpose: To initialize high-resolution graphics mode.

4-99

Remarks:

Examples:

HCOLOR
Syntax:

Purpose:

Remarks:

< screen number>> specifies the display mode to be used as
follows:
Screen# Clear Screen Screen Mode

0 yes 280 x 160 graphics + 4 lines
text

1 yes 280 x 192 graphics, no lines
text

2 no 280 x 160 graphics + 4 lines
text

3 no 280 x 192 graphics, no lines
text

If <screen number> is not specified, <screen number> =
0 is assumed.

<color number> specifies the color to be used and is option-
al. If <color number> is not specified, color is set to 0. When
used with modes 0 and 1 above, <color number> will fill the
screen with the color specified by <color number>. See
HCOLOR for a list of color names and their associated
numbers.

10 HGR Same as Applesoft HGR statement
10 HGR 1,2 Fill screen with violet, set 280 x 192 mode
10 HGR 3 Set 280 x 192 mode, don’t clear screen

NOTE THAT THIS STATEMENT CAN BE USED
DIFFERENTLY IN GBASIC THAN IN APPLESOFT.

HCOLOR=<color number>
where <color number> is an integer in the range 0-12.

To set the color for plotting in high resolution graphics
mode.

The colors available and their numbers are:

0 black 4 black 8 blackl

1 green 5 orange 9 whitel

2 violet 6 blue 10 black 2

3 white 7 white 11 white 2
12 reverse

To distinguish between the different whites and
blacks. Numbers 0, 3, 4 and 7 plot a very fine line. Blackl,
whitel, black2 and white2 (8, 9, 10 and 11) plot a larger dot
or thicker line that is equal in size (width) with dots or lines
plotted with green, violet, orange or blue. Blackl and whi-

4-100

TN

HPLOT
Syntax 1:
Purpose:

Syntax 2:
Purpose:

Remarks:

tel should be used with green or violet if you want dots or
lines of the same position and width. Black2 and white2
should be used with orange or blue.

If you are using a black and white monitor, just use 0, 3,
4 and 7.

<color number> may be specified in the HGR statement
(See HGR.) If is not specified in HGR, it is set to zero by
HGR until another color is specified with the HCOLOR
statement.

HCOLOR may be used in high-resolution graphics mode
only.

Note that because of the way in which home TVs work, a
high-resolution dot plotted with HCOLOR=3 (white) or
HCOLOR=7 (white) will be white only if both (x,y) and
(x+1,y) are plotted. If only (x,y) is plotted, the dot will be
blue when x is even and green when x is odd.

HPLOT [<x1>, <y1>][TO <x2>, <y2> ... [TO <xn>, <yn>]]

To plot a point or draw a line(s) on the high-resolution
screen, using the points specified by (x1,y1), (x2,y2) etc.

HPLOT TO <x2>, <y2>

To draw a line from the last dot plotted to the point at
(x2,y2).

In Syntax 1, HPLOT <x1>, <yl1> plots a single point.

HPLOT <x1>, <y1> TO <x2>, <y2> TO ... <xn>, <yn>
plots a line starting a (x1, y1) and proceeding to each of the
points specified. The plotted line may be extended from
point to point in the same statement by specifying addition-
al points, limited only by screen limits and the 239 char-
acter limit.

In Syntax 1, the color of the dot or line is determined by
the most recent HCOLOR statement. If no color has been
specified, the default color 0 will be assigned.

In Syntax 2, the color of the line is determined by the last
HCOLOR executed. Syntax 2 cannot be used if no dot has
previously been plotted.

HPLOT may be used in high-resolution graphics mode
only.

4-101

Example:

HSCRN
Syntax:
Action:

Remarks:

Example:

10 HGR
20 COLOR=2
30 HPLOT 24,125 T0 100,12 TO 270,1

HSCRN (X,Y)

In high-resolution graphics mode, returns -1 if a dot exists
at point (X,Y).

Note that unlike SCRN, HSCRN does not recognize color.

X must be in the range 0-279 and Y must be in the range
0-191. :

10 HGR: COLOR=3

20 HPLOT 0,100 TO 279,100

30 PRINT HSCRN (46,100), HSCRN (20,20)
RUN

-1 0

4-102

APPENDIX A

New Features in BASIC-80, Release 5.0

The execution of BASIC programs written under Microsoft BASIC, re-
lease 4.51 and earlier may be affected by some of the new features in
release 5.0. Before attempting to run such programs, check for the fol-
lowing:

1.

2.

New reserved words: CALL, CHAIN, COMMON, WHILE,
WEND, WRITE, OPTION BASE, RANDOMIZE.

Conversion from floating point to integer values results in
rounding, as opposed to truncation. This affects not only assign-
ment statements (e.g., I% =2.5 results in 1% =3), but also affects
function and statement evaluations (e.g., TAB(4.5) goes to the 5th
position, A(1.5) yields A(2), and X=11.5 MOD 4 yields 0 for X).

The body of a FOR..NEXT loop is skipped if the initial value of
the loop times the sign of the step exceeds the final value times
the sign of the step.

Division by zero and overflow no longer produce fatal errors. See
Chapter 2.

The RND function has been changed so that RND with no argu-
ment is the same as RND with a positive argument. The RND
function generates the same sequence of random numbers with
each RUN, unless RANDOMIZE is used. See RND in Chapters
3 and 4.

The rules for PRINTing single precision and double precision
numbers have been changed. See PRINT, in Chapter 3.

String space is allocated dynamically, and the first argument in
a two-argument CLEAR statement sets the end of memory. The
second argument sets the amount of stack space. See CLEAR,
Chapter 3.

Responding to INPUT with too many or too few items, or with
the wrong type of value (numeric instead of string, etc.), or with
a carriage return causes the message "?Redo from start” to be
printed. No assignment of input values is made until an accept-
able response is given.

There are two new field formatting characters for use with
PRINT USING. An ampersand is used for variable length string

4-103

10.

11.

12.

13.

14.

fields, and an underscore signifies a literal character in a format
string.

If the expression supplied with the WIDTH statement is 255,
BASIC uses an "infinite” line width, that is, it does not insert
carriage returns. WIDTH LPRINT may be used to set the line
width at the line printer. See WIDTH, Chapter 3.

The at-sign and underscore are no longer used as editing charac-
ters.

Variable names are significant up to 40 characters and can con-
tain embedded reserved words. However, reserved words must
now be delimited by spaces. To maintain compatibility with ear-
lier versions of BASIC, spaces will be automatically inserted be-
tween adjoining reserved words and variable names. WARN-
ING: This insertion of spaces may cause the end of a line to be
truncated if the line length is close to 255 characters.

BASIC programs may be saved in a protected binary format. See
SAVE, Chapter 3.

Reserved words must be preceded by and followed by a space.

Loading and Saving HIRES Pictures with GBASIC

Below is a short GBASIC program demonstrating the use of random
disk 170 statements to load and save Hires Pictures to the disk. Loading
and saving Hires pictures in this way is as fast as or faster than using
Apple DOS BSAVE and BLOAD statements. This program also creates

some pretty Hires pictures.

10 BEFINT A-Z;DEFSNG AsFsR
20 DIM X(23),Y(23)
30 GOTO 4000

1000 KGR 15 3:HCOLOKR=0

1010 HPLOT 140,95

1020 FOR A=0 TO 3.141G9420 STEP .05

1030 R=SIN(A¥2.9)

1040 HPLOT TO 1404107 XR4COS(A)sF6+FTARKSINCA)
1050 NEXT

1060 HGR 1512:FOK T=0 TO SOOINEXTIHGR 1412
1070 GET A$:GOTO 4000

2000 N=INTCRNIIk14)+413

2010 F1=6.,28318/N'FOR I=0 TO N-11A=FIXI

2020 X(1)=COS(AIX107+140:Y(I)=SINCAXFSH9S

2030 NEXT

2040 HGR 1y0tHCOLOR=3

2050 FOR 1=0 TO N-1:FOR J=I T@ N-1:HPLOT X(I1)Y(I) TG X(J)e¥(J)INEXTINEXT
2060 HGR 1y12iFOR T=0 TO 200iNEXT TIHGR 1,12

2070 GET A$:GOTO 4900

4-104

3000
3010
3020
3030

3040
3050

3060
3070
3080
3090
3100
3110
3120
3130
3140

4000
4010
4020
4030
4040
4050

NOTE: Hires pictures transferred to CP/M from Apple DOS with
APDOS will not load correctly with the above program. The first four
these files contain the destination address and length of the
picture, which must be removed. This will also save 1K of disk space.
Follow the procedure below to fix transferred Apple DOS pictures (you

bytes of

HOMEIVTAE 4
ON ERROR GOTO 3020!FILES "#.FIC"!FRINT!FRINTION ERROK GOTO 0
FRINT "Load or Save (L/S)7 “i!GET D3
IF D$="S" O D¥="s* THEN D=11HGR 3IPRINT "Seve”
ELSE D=0!HGR 190!FRINT "Load"
PRINTIINFUT “File name? *,F$!IF Fé="" THEN 3040
IF INSTRCF$s".,")=0 THEN F$=F34°,FIC"

OFEN "R"s15F%

FIELD#1,128 AS A% IRi=A§

H=161L=01P=VARFTR{ k$ j+1

FOR I=1 TO 44

POKE PyLIPOKE F+1sH

IF D=} THEN LSET A$=E$!FUT 1 ELSE GET [ILSET Be=A$
L=L XOR 128} IF L=0 THEN H=H+1

NEXTICLOSE

FOR T=0 TO 1SQ0INEXT T

TEXTIHOMEIUTAR 4 IPRINT TAR(S)"#$4¥ HIKES GRAFHICS DERD X44"

VTAE 70FRINT TAB(S)"1. Rose” sFRINTIFRINT TAE(5)"2, Polsgon® iFRINT
PRINT TABCS)"3. Load/Save Hires Ficture":FRINTIFRINT TAK(S)"Which - *;
AS=INPUTS$(1)IA=VAL{AS)IIF A:3 OR A<l THEN 4030

FRINT A$IPRINTIFRINT TAR{S)"Workins..."i
ON A GOTQ 1000520003000

type the underlined characters):

DDT

DDT VERS 2.2
Ifilename.ext

RFC

M200,2200,100

GO

A>SAVE 32 filename.ext

4-105

APPENDIX B
BASIC-80 Disk I/0

Disk 1/0 procedures for the beginning BASIC-80 user are examined in
this appendix. If you are new to BASIC-80 or if you're getting disk
related errors, read through these procedures and program examples to
make sure you're using all the disk statements correctly.

Wherever a filename is required in a disk command or statement, use
a name that conforms to your operating system’s requirements for file-
names. The CP/M operating system will append a default extension
.BAS to the filename given in a SAVE, RUN, MERGE or LOAD com-
mand.

PROGRAM FILE COMMANDS

Here is a review of the commands and statements used in program file
manipulation.

SAVE “filename”[,A] Writes to disk the program that is currently re-
siding in memory. Optional A writes the program
as a series of ASCII characters. (Otherwise, BAS-
IC uses a compressed binary format.)

LOAD filename"[,R] Loads the program from disk into memory. Op-
tional R runs the program immediately. LOAD
always deletes the current contents of memory
and closes all files before LOADing. If R is in-
cluded, however, open data files are kept open.
Thus programs can be chained or loaded in sec-
tions and access the same data files.

RUN ~filename”(,R] RUN “filename” loads the program from disk
into memory and runs it. RUN deletes the cur-
rent contents of memory and closes all files be-
fore loading the program. If the R option is in-
cluded, however, all open data files are kept
open.

MERGE "filename” Loads the program from disk into memory but
does not delete the current contents of memory.
The program line numbers on disk are merged
with the line numbers in memory. If two lines
have the same number, only the line from the
disk program is saved. After a MERGE com- ~

4-106

mand, the "merged” program resides in memory,
and BASIC returns to command level.

KILL "filename” Deletes the file from the disk. "filename” may be
a program file, or a sequential or random access
data file.

NAME To change the name of a disk file, execute the

NAME statement, NAME "oldfile” AS "newfile”.
NAME may be used with program files, random
files, or sequential files.

PROTECTED FILES

If you wish to save a program in an encoded binary format, use the

"Protect” option with the SAVE command. For example:

SAVE “MYPROG" P
A program saved this way cannot be listed or edited.

DISK DATA FILES - SEQUENTIAL AND RANDOM 1/0

There are two types of disk data files that may be created and accessed
by a BASIC-80 program: sequential files and random access files.

Sequential Files

Sequential files are easier to create than random files but are limited in
flexibility and speed when it comes to accessing the data. The data that
is written to a sequential file is stored, one item after another (sequen-
tially), in the order it is sent and is read back in the same way.

The statements and functions that are used with sequential files are:

OPEN PRINT # INPUT # WRITE #
PRINT# USING LINE INPUT #

CLOSE EOF LOC

The following program steps are required to create a sequential file and
access the data in the file: ‘

1. OPEN the file in "O" mode. OPEN "O",# 1,"DATA”

2. Write data to the file PRINT# 1,A$;B$,C$
using the PRINT# statement.
(WRITE# may be used instead.)

3. To access the data in the CLOSE #1
file, you must CLOSE the file = OPEN ~I",#1,"DATA"
and reOPEN it in "I” mode.

4-107

4. Use the INPUT# statement to INPUT#1,X$,Y$.Z$
read data from the sequential
file into the program.

Program B-1is a short program that creates a sequential file, "DATA",
from information you input at the terminal.

10 OPEN "O”,# 1,"DATA"

20 INPUT “NAME”;N$

25 IF N$="DONE” THEN END
30 INPUT "DEPARTMENT";D$
40 INPUT "DATE HIRED";H$
50 PRINT# 1,N$;",";0%;",";H$
60 PRINT:GOTO 20

RUN

NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/78

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/78

NAME? etc.
PROGRAM B-1 - CREATE A SEQUENTIAL DATA FILE

Now look at Program B-2. It accesses the file "DATA" that was created
in Program B-1 and displays the name of everyone hired in 1978.

10 OPEN "I",# 1,"DATA"

20 INPUT# 1,N$,D$ H$

30 IF RIGHT$(H$,2)="78" THEN PRINT N$
40 GOTO 20

RUN

EBENEEZER SCROOGE

SUPER MANN

4-108

Input past end in 20
Ok

T PROGRAM B-2 - ACCESSING A SEQUENTIAL FILE

Program B-2 reads, sequentially, every item in the file. When all the
data has been read, line 20 causes an "Input past end” error. To avoid
getting this error, insert line 15 which uses the EOF function to test for

end-of-file:
15 IF EOF(1) THEN END
and change line 40 to GOTO 15.

A program that creates a sequential file can also write formatted data
to the disk with the PRINT# USING statement. For example, the state-

ment
PRINT#1,USING" # # # #.# #,";,A.B,CD

could be used to write numeric data to disk without explicit delimiters.
The comma at the end of the format string serves to separate the items
in the disk file.

The LOC function, when used with a sequential file, returns the number
of sectors that have been written to or read from the file since it was
OPENed. A sector is a 128-byte block of data.

Adding Data To A Sequential File

If you have a sequential file residing on disk and later want to add more
data to the end of it, you cannot simply open the file in *O” mode and
start writing data. As soon as you open a sequential file in "O” mode, you
destroy its current contents. The following procedure can be used to add
data to an existing file called "NAMES".

1. OPEN "NAMES" in "I" mode.

OPEN a second file called "COPY” in "O”" mode.

Read in the data in "NAMES" and write it to "COPY".
CLOSE "NAMES"” and KILL it.

Write the new information to "COPY".

Rename "COPY"” as "NAMES” and CLOSE.

Now there is a file on disk called "NAMES” that includes all the
previous data plus the new data you just added.

Program B-3 illustrates this technique. It can be used to create or add

onto a file called NAMES. This program also illustrates the use of LINE
—~ INPUT# to read strings with embedded commas from the disk file.

N e oe N

4-109

Remember, LINE INPUT# will read in characters from the disk until
it sees a carriage return (it does not stop at quotes or commas) or until
it has read 255 characters.

10 ON ERROR GOTO 2000

20 OPEN "1, # 1,"NAMES”

30 REM IF FILE EXISTS, WRITE IT TO "COPY”~

40 OPEN "O",#2,"COPY”

50 IF EOF(1) THEN 90

60 LINE INPUT#1,A%

70 PRINT#2,A%

80 GOTO 50

90 CLOSE #1

100 KILL “NAMES”

110 REM ADD NEW ENTRIES TO FILE

120 INPUT “NAME";N$

130 IF N$="" THEN 200 ‘CARRIAGE RETURN EXITS INPUT LOOP

140 LINE INPUT "ADDRESS? ";A$

150 LINE INPUT “BIRTHDAY? ";B$

160 PRINT#2,N$

170 PRINT#2,A%

180 PRINT#2,8%

190 PRINT:GOTO 120

200 CLOSE

205 REM CHANGE FILENAME BACK TO "NAMES”

210 NAME "COPY" AS "NAMES”

2000 IF ERR=53 AND ERL=20 THEN OPEN "O",# 2,"COPY":RESUME

120
2010 ON ERROR GOTO O

PROGRAM B-3 - ADDING DATA TO A SEQUENTIAL FILE

The error trapping routine in line 2000 traps a "File does not exist”
error in line 20. If this happens, the statements that copy the file are
skipped, and "COPY" is created as if it were a new file.

Random Files

Creating and accessing random files requires more program steps than
sequential files, but there are advantages to using random files. One
advantage is that random files require less room on the disk, because
BASIC stores them in a packed binary format. (A sequential file is stored
as a series of ASCII characters.)

The biggest advantage to random files is that data can be accessed
randomly, i.e., anywhere on the disk — it is not necessary to read
through all the information, as with sequential files. This is possible /™

4-110

because the information is stored and accessed in distinct units called
records and each record is numbered.

The statements and functions that are used with random files are:

OPEN FIELD LSET/RSET GET
PUT CLOSE LOC

MKI$ CVI
MKS$ CVS
MKD$ CvD

Creating a Random File
The following program steps are required to create a random file.

1. OPEN the file for random OPEN "R",#1,"FILE",32
access ("R” mode). This example
specifies a record length of 32
bytes. If the record length is
omitted, the default is 128

bytes.
2. Use the FIELD statement to FIELD #1 20 AS N$,
allocate space in the random 4 AS A$, 8 AS P$

buffer for the variables that
will be written to the random

file.
3. Use LSET to move the data LSET N$=X$
into the random buffer. LSET A$=MKSS$(AMT)

Numeric values must be made LSET P$=TEL$

into strings when placed in

the buffer. To do this, use the

"make” functions: MKI to

make an integer value into a

string, MKS$ for a single

precision value, and MKD$ for

a double precision value.
4. Write the data from PUT #1,CODE%

the buffer to the disk

using the PUT statement.
Look at Program B-4. It takes information that is input at the terminal
and writes it to a random file. Each time the PUT statement is executed,
a record is written to the file. The two-digit code that is input in line 30
becomes the record number.

4-111

NOTE

Do not use a FIELDed string variable in an INPUT or
LET statement. This causes the pointer for that varia-
ble to point into string space instead of the random file
buffer.

10 OPEN "R"#1,"FILE"

20 FIELD #1,20 AS N$, 4 AS A$, 8 AS P$
30 INPUT 2-DIGIT CODE";CODE %
40 INPUT "NAME";X$

50 INPUT "AMOUNT";AMT

60 INPUT "PHONE";TEL$:PRINT
70 LSET N$=X$

80 LSET A$ =MKS$(AMT)

90 LSET P$=TELS

100 PUT # 1,CODE%

110 GOTO 30

PROGRAM B-4 - CREATE A RANDOM FILE

Access a Random File
The following program steps are required to access a random file:

1. OPEN the file in "R” mode. OPEN "R”,#1,"FILE",32
2. Use the FIELD statement to FIELD #1 20 AS N$,
allocate space in the random 4 AS AS, 8 AS P$

buffer for the variables that
will be read from the file.

NOTE:

In a program that performs both input and output on
the same random file, you can often use just one OPEN
statement and one FIELD statement.

3. Use the GET statement to move GET #1,CODE%
the desired record into the
random buffer.

4. The data in the buffer may PRINT N$
now be accessed by the program. PRINT CVS(A$)
Numeric values must be converted
back to numbers using the
"convert” functions: CVI for
integers, CVS for single
precision values, and CVD
for double precision values.

4-112

Program B-5 accesses the random file “FILE” that was created in Pro-
gram B-4. By inputting the three-digit code at the terminal, the informa-
~— tion associated with that code is read from the file and displayed.

10 OPEN "R",#1,”FILE"

20 FIELD #1, 20 AS N$, 4 AS AS, 8 AS P$
30 INPUT "2-DIGIT CODE";CODE %

40 GET #1, CODE%

50 PRINT N§

60 PRINT USING "$$# # #.# # ",CVS(A$)
70 PRINT P$:PRINT '

80 GOTO 30

PROGRAM B-5 - ACCESS A RANDOM FILE

The LOC function, with random files, returns the ”current record num-
ber.” The current record number is one plus the last record number that
was used in a GET or PUT statement. For example, the statement

IF LOC(1)>50 THEN END

ends program execution if the current record number in file # 1 is higher
than 50.

Program B-6 is an inventory program that illustrates random file ac-
cess. In this program, the record number is used as the part number, and
it is assumed the inventory will contain no more than 100 different part
numbers. Lines 900-960 initialize the data file by writing CHR$(255) as
the first character of each record. This is used later (line 270 and line 500)
to determine whether an entry already exists for that part number.

Lines 130-220 display the different inventory functions that the pro-
gram performs. When you type in the desired function number, line 230
branches to the appropriate subroutine.

PROGRAM B-6 - INVENTORY
120 OPEN"R”,#1,"INVEN.DAT",39
125 FIELD#1,1 AS F$,30 AS D$, 2 AS Q$,2 AS R$,4 AS P$
130 PRINT:PRINT "FUNCTIONS:":PRINT
135 PRINT 1,”INITIALIZE FILE"
140 PRINT 2,”CREATE A NEW ENTRY"
150 PRINT 3,"DISPLAY INVENTORY FOR ONE PART”
160 PRINT 4,”ADD TO STOCK"
170 PRINT 5,"SUBTRACT FROM STOCK"
180 PRINT 6,"DISPLAY ALL ITEMS BELOW REORDER LEVEL"
220 PRINT:PRINT:INPUT“FUNCTION*:FUNCTION

4-113

225 IF (FUNCTION<1) OR (FUNCTION>6) THEN PRINT "BAD FUNCTION
NUMBER*:GOTO 130

230 ON FUNCTION GOSUB 900,250,390,480,560,680

240 GOTO 220

250 REM BUILD NEW ENTRY

260 GOSUB 840

270 IF ASC(F$)<>255 THEN INPUT"OVERWRITE*;A$:IF A$ <>"Y* THEN
RETURN

280 LSET F$=CHR$(0)

290 INPUT "DESCRIPTION";DESC$

300 LSET D$=DESC$

310 INPUT "QUANTITY IN STOCK":Q%

320 LSET Q$=MKI$(Q%)

330 INPUT "REORDER LEVEL";R%

340 LSET R$=MKI$(R%)

350 INPUT "UNIT PRICE";P

360 LSET P$=MKS$(P)

370 PUT#1,PART %

380 RETURN

390 REM DISPLAY ENTRY

400 GOSUB 840

410 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN

420 PRINT USING "PART NUMBER # # # ";PART %

430 PRINT D$

440 PRINT USING "QUANTITY ON HAND # # # # #",CVI(Q$)

450 PRINT USING "REORDER LEVEL # # # # # ",CVI(R$)

460 PRINT USING "UNIT PRICE $$# #.# # ",CVS(P$)

470 RETURN

480 REM ADD TO STOCK

490 GOSUB 840

500 IF ASC(F$)=55 THEN PRINT "NULL ENTRY":RETURN

510 PRINT D$:INPUT "QUANTITY TO ADD ";A%

520 Q% =CVI(Q$)+A%

530 LSET Q$=KI$(Q%)

540 PUT#1,PART%

550 RETURN

560 REM REMOVE FROM STOCK

570 GOSUB 840

580 IF ASC(F$)=255 THEN PRINT “NULL ENTRY":RETURN

590 PRINT D$

600 INPUT "QUANTITY TO SUBTRACT";S%

610 Q% =CVI(Q$)

620 IF (Q%-S%)<0 THEN PRINT "ONLY";Q%;" IN STOCK":GOTO 600

630 Q%=Q%-S%

4-114

640 IF Q% =<CVI(R$) THEN PRINT "QUANTITY NOW";Q%;” REORDER
LEVEL";CVI(R$)

650 LSET Q$=MKI$(Q%)

660 PUT# 1,PART%

670 RETURN

680 DISPLAY ITEMS BELOW REORDER LEVEL

690 FOR I=1 TO 100

710 GET#1,l

720 IF CVI(Q$)<CVI(R$) THEN PRINT D$;” QUANTITY";CVI(Q$) TAB(50)
"REORDER LEVEL";CVI(R$)

730 NEXT |

740 RETURN

840 INPUT "PART NUMBER”:PART %

850 IF(PART%<1) OR (PART%>100) THEN PRINT “BAD PART NUM-
BER":GOTO 840 ELSE GET# 1,PART%:RETURN

890 END

900 REM INITIALIZE FILE

910 INPUT "ARE YOU SURE”;:B$:IF B$<>"Y” THEN RETURN

920 LSET F$=CHR$(255)

930 FORI=1 TO 100

940 PUT#1,

950 NEXT |

960 RETURN

PROGRAM B-6 - INVENTORY

Sequential I/0 to and from Random Files

It is also possible to perform sequential 1/0 operations to and from
random disk files. Although it is generally slower, it is very similar to the
Apple DOS random file I/0 and may be useful.

20

30 OPEN "R y1,°RNDLTXT®
40 FOR I=1 TO 20

50 WKITE#1s“RECORD "»1," ¥¥% LCJLJE ¥kx*
80 FUT 1,1

70 NEXT

80 CLOSE

?0 ¢

100

110 OFEN *R"s1s“RND, TXT®
120 FOR I=20 T0 1 STEF -1
130 GET 141

140 INFUT$1,ASrRBS

150 PRINT AS$;RiES

160 NEXT

170 CLOSE

4-115

APPENDIX C

Assembly Language Subroutines

All versions of BASIC-80 have provisions for interfacing with assembly
language subroutines. The USR function allows assembly language sub-
routines to be called in the same way BASIC’s intrinsic functions are
called.

The address of FRCINT is 103 hex and the address of MAKINT is 105
hex.

Location 107 Hex contains the high byte of the CP/M BIOS entry for
use with direct calls to the BIOS. While BASIC is up, the JMP at
location zero is a JMP to the “Reset error” of BASIC, not to the BIOS
warm boot routine.

MEMORY ALLOCATION

Memory space must be set aside for an assembly language subroutine
before it can be loaded. During initialization, enter the highest memory
location minus the amount of memory needed for the assembly language
subroutine(s). BASIC uses all memory available from its starting loca-
tion up, so only the topmost locations in memory can be set aside for user
subroutines.

When an assembly language subroutine is called, the stack pointer is set
up for 8 levels (16 bytes) of stack storage. If more stack space is needed,
BASIC’s stack can be saved and a new stack set up for use by the
assembly language subroutine. BASIC’s stack must be restored, how-
ever, before returning from the subroutine.

The assembly language subroutine may be loaded into memory by
means of the system monitor, or the BASIC POKE statement, or (if the
user has the MACRO-80 or FORTRAN-80 package) routines may be
assembled with MACRO-80 and loaded using LINK-80.

USR FUNCTION CALLS - EXTENDED AND
DISK BASIC
The syntax of the USR function is
USR[«digit>}(argument)
where <digit> is from 0 to 9 and the argument is any numeric or string

expression. <digit> specifies which USR routine is being called, and
corresponds with the digit supplied in the DEF USR statement for that

routine. If <digit> is omitted, USRO is assumed. The address given in
4-116

TN

N\

the DEF USR statement determines the starting address of the subrou-
tine.

When the USR function call is made, register A contains a value that
specifies the type of argument that was given. The value in A may be
one of the following:

Value in A Type of Argument

2 Two-byte integer (two’s complement)

3 String

4 Single precision floating point number
8 Double precision floating point number

If the argument is a number, the [H,L] register pair points to the Float-
ing Point Accumulator (FAC) where the argument is stored.

If the argument is an integer:

FAC-3 contains the lower 8 bits of the argument and
FAC-2 contains the upper 8 bits of the argument.

If the argument is a single precision floating point number:

FAC-3 contains the lowest 8 bits of mantissa and

FAC-2 contains the middle 8 bits of mantissa and

FAC-1 contains the highest 7 bits of mantissa with leading 1
suppressed (implied). Bit 7 is the sign of the number (0=posi-
tive, 1=negative).

FAC is the exponent minus 128, and the binary point is to the
left of the most significant bit of the mantissa.

If the argument is a double precision floating point number:

FAC-7 through FAC4 contain four more bytes of mantissa
(FAC-7 contains the lowest 8 bits).

If the argument is a string, the [D,E] register pair points to 3 bytes
called the "string descriptor.” Byte 0 of the string descriptor contains the
length of the string (0 to 255). Bytes 1 and 2, respectively, are the lower
and upper 8 bits of the string starting address in string space.

CAUTION: Iftheargument isa string literal in the program, the string
descriptor will point to program text. Be careful not to alter or destroy
your program this way. To avoid unpredictable results, add +“" to the
string literal in the program. Example:

A% = "BASIC-80"+"~

This will copy the string literal into string space and will prevent altera-
tion of program text during a subroutine call.

4-117

Usually, the value returned by a USR function is the same type (integer,
string, single precision or double precision) as the argument that was
passed to it. However, calling the MAKINT routine returns the integer
in [H,L] as the value of the function, forcing the value returned by the
function to be integer. To execute MAKINT, use the following sequence
to return from the subroutine:

PUSH H :save value to be returned
LHLD XXX :get address of MAKINT routine
XTHL :save return on stack and

;get back [H,L]
RET return

Also, the argument of the function, regardless of its type, may be forced
to an integer by calling the FRCINT routine to get the integer value of
the argument in [H,L]. Execute the following routine:

LXI H :get address of subroutine
;continuation
PUSH H ;place on stack
LHLD XXX ;get address of FRCINT
PCHL
SUBL:

CALL STATEMENT

User function calls to either Z-80 assembly language subroutines or
6502 assembly language subroutines may be made with the CALL state-
ment. (See CALL, Chapter 3.)

Calling a Z-80 Subroutine

The calling sequence used is the same as that in Microsoft’s FORTRAN,
COBOL and BASIC compilers.

A CALL statement with no arguments generates a simple "CALL" in-
struction. The corresponding subroutine should return via a simple
"RET.” (CALL and RET are 8080 opcodes - see an 8080 reference manual
for details.)

A subroutine CALL with arguments results in a somewhat more com-
plex calling sequence. For each argument in the CALL argument list, a
parameter is passed to the subroutine. That parameter is the address of
the low byte of the argument. Therefore, parameters always occupy two
bytes each, regardless of type.

The method of passing the parameters depends upon the number of
parameters to pass:

4-118

1. If the number of parameters is less than or equal to 3, they are
passed in the registers. Parameter 1 will be in HL, 2 in DE (if
present), and 3 in BC (if present).

2. If the number of parameters is greater than 3, they are passed
as follows:

1. Parameter 1 in HL.

2. Parameter 2 in DE.

3. Parameters 3 through n in a contiguous data
block. BC will point to the low byte of this
data block (i.e., to the low byte of parameter 3).

Note that, with this scheme, the subroutine must know how many
parameters to expect in order to find them. Conversely, the calling pro-
gram is responsible for passing the correct number of parameters. There
are no checks for the correct number or type of parameters.

If the subroutine expects more than 3 parameters, and needs to transfer
them to a local data area, there is a system subroutine which will per-
form this transfer. This argument transfer routine is named $AT (locat-
ed in the FORTRAN library, FORLIB.REL), and is called with HL point-
ing to the local data area, BC pointing to the third parameter, and A
containing the number of arguments to transfer (i.e., the total number
of arguments minus 2). The subroutine is responsible for saving the first
two parameters before calling §AT. For example, if a subroutine expects
5 parameters, it should look like:

SUBR: SHLD P1 ;SAVE PARAMETER 1
XCHG
SHLD P2 ;SAVE PARAMETER 2
MV A3 iNO. OF PARAMETERS LEFT
LXi HP3 ;POINTER TO LOCAL AREA

CALL $AT ;TRANSFER THE OTHER 3 PARAMETERS

[Body of subroutine]

RET ;RETURN TO CALLER
P1: DS 2 ;SPACE FOR PARAMETER 1
P2: DS 2 ;SPACE FOR PARAMETER 2
P3: DS 6 ;SPACE FOR PARAMETERS 3-5

4-119

A listing of the argument transfer routine $AT follows.

00100 ; ARGUMENT TRANSFER

00200 ;[B,C] POINTS TO 3RD PARAM. s
00300 ;[H,L] POINTS TO LOCAL STORAGE FOR PARAM 3

00400 ;[A] CONTAINS THE # OF PARAMS TO XFER(TOTAL-2)

00500

00600

00700 ENTRY $AT ;SAVE [H,L] IN [D,E]

00800 $AT: XCHG

00900 MOV H,B

01000 MOV LC ;[H,L] = PTR TO PARAMS
01100 ATIL: MOV cM

01200 INX H

01300 MOV BM

01400 INX H ;[B,C] = PARAM ADR

01500 XCHG ;[H,L] POINTS TO LOCAL STORAGE
01600 MoV m.C

01700 INX H

01800 MoV M.B

01900 INX H ;STORE PARAM IN LOCAL AREA
02000 XCHG ;SINCE GOING BACK TO AT1
02100 DCR A ;TRANSFERRED ALL PARAMS?
02200 JNZ AT1 ;NO, COPY MORE

02300 RET ;YES, RETURN

When accessing parameters in a subroutine, don’t forget that they are
pointers to the actual arguments passed.

NOTE

It isentirely up to the programmer to see to it that the
arguments in the calling program match in number,
type, and length with the parameters expected by the
subroutine. This applies to BASIC subroutines, as well
as those written in assembly language.

Calling a 6502 Subroutine

The syntax of a CALL statement to a 6502 subroutine differs from that
of a CALL to a Z-80 subroutine in requiring that a percent symbol (%)
be used before the variable name.

Up to three parameters may be used when calling a 6502 assembly
language subroutine. All of the parameters must be single byte
parameters.

They are passed as follows:
1. Parameter 1in 6502 A register

4-120

2. Parameter 2 in 6502 X register
3. Parameter 3 in 6502 Y register
For example:

CALL % ROUTINE (10, 20,30)
10 would be passed in the A register, 20 in the X register
and 30 in the Y register. All or some of the parameters may
be omitted.

INTERRUPTS

Assembly language subroutines can be written to handle interrupts. All
interrupt handling routines should save the stack, register A-L and the
PSW. Interrupts should always be re-enabled before returning from the
subroutine, since an interrupt automatically disables all further inter-
rupts once it is received. In CP/M BASIC, all interrupt vectors are free.

See “Software and Hardware Details” section of the SoftCard

documentation.
APPENDIX D
Converting Programs to BASIC-80 From
BASICs other Than Applesoft

If you have programs written in a BASIC other than BASIC-80, some
minor adjustments may be necessary before running them with BASIC-
80. Here are some specific things to look for when converting BASIC
programs.

STRING DIMENSIONS

Delete all statements that are used to declare the length of strings. A
statement such as DIM A$(I,J), which dimensions a string array for J
elements of length I, should be converted to the BASIC-80 statement
DIM A$(J).

Some BASICs use a comma or ampersand for string concatenation.
Each of these must be changed to a plus sign, which is the operator for
BASIC-80 string concatenation.

In BASIC-80, the MID$, RIGHTS, and LEFTS$ functions are used to take
substrings of strings. Forms such as A$(I) to access the Ith character in
AS$, or A$(1J) to take a substring of A$ from position I to position J, must
be changed as follows:

4-121

Other BASIC BASIC-80
X$=A$() X$=MID$(A$,),1)
X$=A%$(J) X$=MID$(AS I, J4+1)

If the substring reference is on the left side of an assignment and X$ is |
used to replace characters in A$, convert as follows:
Other BASIC BASIC-80

A$(=X$ MID$(AS,1,1)=X$
A$(l,J)=X$ MID$(AS,1,J-1+1)=X$

MULTIPLE ASSIGNMENTS
Some BASICs allow statements of the form:
10 LETB=C=0

to set B and C equal to zero. BASIC-80 would interpret the second equal
sign as a logical operator and set B equal to —1 if C equaled 0. Instead,
convert this statement to two assignment statements:

10 C=0:B=0

MULTIPLE STATEMENTS

Some BASICs use a backslash (\) to separate multiple statements on a
line. With BASIC-80, be sure all statements on a line are separated by
a colon ().

MAT FUNCTIONS

Programs using the MAT functions available in some BASICs must be
rewritten using FOR.. NEXT loops to execute properly.

4-122

P

Number

APPENDIX E

Summary of Error Codes and

Error Messages

Message
NEXT without FOR
A variable in a NEXT statement does not correspond to
any previously executed, unmatched FOR statement
variable.
Syntax error
A line is encountered that contains some incorrect se-
quence of characters (such as unmatched parenthesis,
misspelled command or statement, incorrect punctua-
tion, etc.).
Return without GOSUB
A RETURN statement is encountered for which there is
no previous, unmatched GOSUB statement.

Out of data

A READ statement is executed when there are no
DATA statements with unread data remaining in the
program.

Illegal function call
A parameter that is out of range is passed to a math or
string function. An FC error may also occur as the result

of:
1. a negative or unreasonably large subscript

2. a negative or zero argument with LOG

3. a negative argument to SQR

4. a negative mantissa with a non-integer exponent
5

. acall to a USR function for which the starting ad-
dress has not yet been given
6. an improper argument to MID$, LEFT$, RIGHTS,
INP, OUT, WAIT, PEEK, POKE, TAB, SPC,
STRINGS$, SPACES, INSTR, or ON...GOTO.

4-123

10

11

12

13

14

15

Overflow

The result of a calculation is too large to be represented
in BASIC-80’s number format. If underflow occurs, the
result is zero and execution continues without an error.

Out of memory
A program is too large, has too many FOR loops or
GOSUBs, too many variables, or expressions that are
too complicated.

Undefined line
A line reference in a GOTO, GOSUB, IF..THEN...ELSE
or DELETE is to a nonexistent line.

Subscript out of range

An array element is referenced either with a subscript
that is outside the dimensions of the array, or with the
wrong number of subscripts.

Redimensioned array

Two DIM statements are given for the same array, or a
DIM statement is given for an array after the default
dimension of 10 has been established for that array.

Division by zero

A division by zero is encountered in an expression, or
the operation of involution results in zero being raised
to a negative power. Machine infinity with the sign of
the numerator is supplied as the result of the division,
or positive machine infinity is supplied as the result of
the involution, and execution continues.

Illegal direct
A statement that is illegal in direct mode is entered as
a direct mode command.

Type mismatch

A string variable name is assigned a numeric value or
vice versa; a function that expects a numeric argument
is given a string argument or vice versa.

Out of string space

String variables have caused BASIC to exceed the
amount of free memory remaining. BASIC will allocate
string space dynamically, until it runs out of memory.

String too long
An attempt is made to create a string more than 255
characters long.

4-124

16

17

18

19

20

21

22

23

26

29

30

31

32

String formula too complex
A string expression is too long or too complex. The
expression should be broken into smaller expressions.

Can’t continue
An attempt is made to continue a program that:

1. has halted due to an error,

2. has been modified during a break in execution, or
3. does not exist.

Undefined user function

A USR function is called before the function definition
(DEF statement) is given.

No RESUME
An error trapping routine is entered but contains no

RESUME statement.

RESUME without error
A RESUME statement is encountered before an error
trapping routine is entered.

Unprintable error

An error message is not available for the error condi-
tion which exists. This is usually caused by an ERROR
with an undefined error code.

Missing operand

An expression contains an operator with no operand
following it.

Line buffer overflow

An attempt is made to input a line that has too many
characters.

FOR without NEXT
A FOR was encountered without a matching NEXT.

WHILE without WEND
A WHILE statement does not have a matching WEND.

WEND without WHILE
A WEND was encountered without a matching

WHILE.

Reset error
The RESET key on the Apple keyboard has been pressed.

Graphics statement not implemented
Graphics statement is not implemented in MBASIC. It
may be used with GBASIC only.

4-125

50

51

52

53

54

55

57

58

61

62

63

Disk Errors

Field overflow

A FIELD statement is attempting to allocate more
bytes than were specified for the record length of a ran-
dom file.

Internal error

An internal malfunction has occurred in Disk BASIC-
80. Report to Microsoft the conditions under which the
message appeared.

Bad file number

A statement or command references a file with a file
number that is not OPEN or is out of the range of file
numbers specified at initialization.

File not found
A LOAD, KILL or OPEN statement references a file
that does not exist on the current disk.

Bad file mode

An attempt is made to use PUT, GET, or LOF with a
sequential file, to LOAD a random file or to execute an
OPEN with a file mode other than I, O, or R.

File already open
A sequential output mode OPEN is issued for a file that
is already open; or a KILL is given for a file that is open.

Disk I/0 error

An 1/0 error occurred on a disk 1/0 operation. It is a
fatal error, i.e., the operating system cannot recover
from the error.

File already exists

The filename specified in a NAME statement is identical
to a filename already in use on the disk.

Disk full
All disk storage space is in use.

Input past end

An INPUT statement is executed after all the data in
the file has been INPUT, or for a null (empty) file. To
avoid this error, use the EOF function to detect the end
of file.

Bad record number
In a PUT or GET statement, the record number is either

4-126

64

66

67

68

69

70

greater than the maximum allowed (32767) or equal to
zero.

Bad file name

An illegal form is used for the filename with LOAD,
SAVE, KILL, or OPEN (e.g., a filename with too many
characters).

Direct statement in file
A direct statement is encountered while LOADing an
ASCII-format file. The LOAD is terminated.

Too many files
An attempt is made to create a new file (using SAVE or
OPEN) when all 255 directory entries are full.

Disk read only

Disk is write protected, or disk was changed without
using RESET first. This error message will usually
appear twice. This is normal and should not be cause
for concern.

Drive select error.
A non-existent drive was selected.

File read only
A write was attempted to a file that has been set to
“Read Only” with the STAT program.

4-127

APPENDIX F

Mathematical Functions

Derived Functions

Functions that are not intrinsic to BASIC-80 may be calculated as
follows.

Function BASIC-80 Equivalent

SECANT SEC(X)=1/C0OS(X)

COSECANT CSC(X)=1/SINX)

COTANGENT COTX)=1/TANX)

INVERSE SINE ARCSIN(X)=ATN(X/SQR(X*X+1))

INVERSE COSINE ARCCOS(X)=-ATN (X/SQR
(-X*X+1)+1.5708

INVERSE SECANT ARCSEC(X)=ATNX/SQRX*X-1))
+SGN(SGN(X)-1)*1.5708

INVERSE COSECANT ARCCSC(X)=ATN(X/SQR(X*X-1))

+(SGN(X)-1)*1.5708
INVERSE COTANGENT ARCCOT(X)=ATN(X)+1.5708

HYPERBOLIC SINE SINH(X)=EXP(X)-EXP(-X))/ 2

HYPERBOLIC COSINE COSHX)=(EXP(X)+EXP(X))/2

HYPERBOLIC TANGENT TANH(X) = EXP(-X)/EXP(X)+
EXP(-X))*2+1

HYPERBOLIC SECANT SECH(X)=2/(EXP(X)+EXP(-X))

HYPERBOLIC COSECANT CSCH(X)=2/(EXP(X)-EXP(-X))
HYPERBOLIC COTANGENT COTH(X)=EXP(-X)/(EXP(X)

-EXP(X))*2+1

INVERSE HYPERBOLIC

SINE ARCSINH(X)=LOG(X+SQR
X*X+1))

INVERSE HYPERBOLIC

COSINE ARCCOSH(X)=LOG(X+SQR(X*X-1)

INVERSE HYPERBOLIC

TANGENT ARCTANH(X)=LOG((1+X)/(1-X))/2

INVERSE HYPERBOLIC

SECANT ARCSECH(X)=LOG((SQR(-X*X+1)
+1)/X)

4-128

INVERSE HYPERBOLIC
COSECANT ARCCSCH(X)=LOG((SGN(X)*SQR
X*X+1)+1)/X

INVERSE HYPERBOLIC
COTANGENT ARCCOTH(X)=LOG(X+1)/(X-1))/2

4-129

APPENDIX G
ASCII Character Codes

ASCII ASCII ASCII

Code Character Code Character Code Character
000 NUL 036 $ 072 H
001 SOH 037 % 073 I
002 STX 038 & 074 J
003 ETX 039 ’ 075 K
004 EOT 040 (076 L
005 ENQ 041) 077 M
006 ACK 042 * 078 N
007 BEL 043 + 079 0]
008 BS 044 , 080 P
009 HT 045 - 081 Q
010 LF 046 . 082 R
011 vT 047 / 083 S
012 FF 048 0 084 T
013 CR 049 1 085 U
014 SO 050 2 086 v
015 SI 051 3 087 w
016 DLE 052 4 088 X
017 DC1 053 5 089 Y
018 DC2 054 6 090 Z
019 DC3 055 7 091 [
020 DC4 056 8 092 \
021 NAK 057 9 093]
022 SYN 058 : 094 ®
023 ETB 059 ; 095 <
024 CAN 060 < 096 ¢
025 EM 061 = 097 a
026 SUB 062 > 098 b
027 ESCAPE 063 ? 099 c
028 FS 064 @ 100 d
029 GS 065 A 101 e
030 RS 066 B 102 f
031 USs 067 C 103 g
032 SPACE 068 D 104 h
033 ! 069 E 105 i
034 " 070 F 106 j
035 # 071 G 107 k

4-130

108 1 115 8 122 Z
109 m 116 t 123 {

110 n 117 u 124 |

111 0 118 v 125 }

112 p 119 w 126 ~
113 q 120 X 127 DEL
114 r 121 y

ASCII codes are in decimal.
LF=Line Feed, FF=Form Feed, CR=Carriage Return, DEL=Rubout

4-131

AB S e 4-81
AAdItION e 4-18
ALL ..o e e 4-27,4-29
ANSI Compatibility ... 4-5
APCLANZENT ... 4-82
Array variables..................... 4-16,4-29,4-33

ASCITCOAES ...t 4-81to 4-82,4-130
ASCIIformat ..., 4-26,4-54,4-73
4-25,4-32, 4-59, 4-95, 4-96, 4-115

AN e e e 4-82
AU 4-5,4-6,4-11,4-24,4-25
Boo0lean Operatorsocoooi i 4-20
Built-in Disk [/0 Statementscocooiiiiiiieeeeeeeee e 4-4
CALL ... e 4-25,4-4,4-117
Carriage return g -47, 4-51, 4-78 to 4-80
CD Bl e 4-82
CHAIN ...

CharacterSet ..o oot 4-11
CHRS$........ 4-82
CIN T e e 4-83
CLEAR e

CLOSE ...

Compilability ... 4-5
Concatenation . 4-22
CONSLANTS ... -

DEFDBL....
DEFINT ...
DEFSNG....
DEFSTR....
DEINT

DI L oo 1-7,4-31
.4-7,4-11, 4-26, 4-32

Directmode4-10, 4-46, 4-56
DHVISION ..o 4-18
Double Precisiono 4-14, 4-31, 4-60, 4-82, 4-103

B DT oo

ERROR ...

Errorcodes4-23,4-37,4-38,4-123
EITOT INESSAGESo.oovrerereieememacaarers e es et 4-23,4-123
EITOr trapPINg 4-37, 4-38, 4-56, 4-72, 4-109
ESCAPE ..o oot 4-12,4-33
X P oo 4-85
Exponentiation4-18t04-19,4-85
EERPIESSIONSt 4-17

GOSUB.
GOTO ...

HEXS i

HGR ...

IF..THEN ...
IF...THEN...ELSE...
Indirect MOde ...

Integer.......... 4-83,4-85, 4-87

Integer diVISION ... 4-18
INEEITUPES oo 4-120
INVERSE ..o e 4-6,4-49
KILL e e 4-50, 4-106
LR T e e 4-88
LN e e e e e 4-88
LT e 4-39, 4-50, 4-111

.4-11, 4-47,4-51,4-79

LINEINPUT . e
LINEINPUT# e
Linenumbers4-10t0 4-11,4-24, 4-70
Line printer ..., 4-53,4-78, 4-89
LANES oo e e, 4-10to 4-11

LPRINT USING ..

MAKINT e 4-115,4-116
MBASIC . ..4-3,4-9,4-10
MERGE ... 4-16,4-54,4-105
MID$......... 4-55,4-89, 4-121

MK D e 4-90, 4-110
MKIS$4-90, 4-110
MKSS$......... ..4-90, 4-110
MOD OPETatorooviiieieeo e, 4-19
Modulus arithmetic ... 4-19

Multiplication ... 4-19

Numeric constants ...

Numeric variables

O C T oo e 4-90
Octal ... 4-14, 4-90
ONERRORGOTO... ...4-7,4-56

ON L GOSUB oot 4-57

ONL.GOTO o [ETO OOV 4-57
OPEN ... 4-106, 4-110
OPETALOTSo.oeoeeoeoeieis oo 4-5,4-17,4-19 to4-22
OPTION BASE oot 1-58
OU T oo et 4-7
OVEIE OW oo 4-19, 4-85, 4-95,4-103
OVETLAY ..o oot 4-27
P oo 4-6,4-90
PEEK4-59, 4-91
PO T e ...4-6,4-59
POKE oo e ..4-59, 4-91
POP.. ... 4-6,4-60
PO oo 4-79, 4-91
P RINT o e 4-60to 4-62,4-103
PRINT USING .o 4-4, 4-62 to 4-65, 4-103
PRINT 2 oo ettt 4-65, 4-106
PRINT # USING 4-65, 4-106, 4-108
Protected files 4-73,4-104, 4-1U6
PUI T oo 4-39, 4-67,4-110
Randomfiles........... 4-39, 4-40, 4-42, 4-50, 4-54, 4-58, 4-67, 4-84, 4-88, 4-90, 4-109, 4-110
Random NUMBETS ..ottt 4-67, 4-68, 4-92
RANDOMIZE ... 4-67,4-68,4-92, 4-103
RE A DD 4-68, 4-69, 4-71
Relational OPerators ...

REM oo
RENUM .

RESE T oo e 4-71
RESTORE 4T
RESUME [PROTTO 4-7,4-72

RE T URN oo e e e 4-42
RIGH TS oo 4-91

OGN s 4-92t0 4-92

Single precision ... 4-14 to 4-15, 4-31, 4-61, 4-83
SP A CKE S 4-93
SPC4-93
SR 4-94
STOP o 4-29, 4-36,4-42 to 4-43,4-74
ST R oo 4-94
StrANG CONSLANTS.........ooi it 4-13
String functions... 4-5,4-84, 4-87, 4-88, 4-91, 4-94, 4-95, 4-121
StriNgOPErAtOTS 4-22
Stringspace........... 27, 4-86, 4-103, 4-111
Stringvariables 4-16, 4-31, 4-51
ST RIN G e 4-94
Subroutines .. 4-25,t0 4-26, 4-42t0 4-43, 4-57, 4-115
SUDBSCIAPLS ... e 4-16, 4-33, 4-58
SUDLIACLION ... e 4-18
SWAP4-74

SYSTEM L e e 4-75

VAL o 4-95
Variables.............................. ...4-15t04-16
VARPTR e e 4-96
VLIN ... 4-76,4-6
VPOS4-6,4-96
VT A e 4-7,4-77
WAL oo e 4.7,4-77

WEND4-4,4-78

13-S@CEOT ..ot 4-3,4-9
LB OO OT ..o e e 4.3,4-9, 4-98

